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In this article we give a comparative discussion of the finite element 
approximation of two partial differential equation problems. These two 
problems which are apparantly quite unrelated are the Stokes problem 
for incompressible viscous flow and an exact boundary controllability 
problem for the wave equation. We show that straightforward discrete 
approximations to these problems yield approximate problems which 
are ill-posed. The analysis of the ill-posedness of the above problems 
shows an identical cause, namely the strong damping of the high 
frequency modes, beyond a critical wave number. From this analogy, a 
well-known cure for the discrete Stokes problem, i.e., using more 
accurate approximations for velocity than for pressure, provides a 
simple way to eliminate the ill-posedness of the discrete exact 
boundary controllability problem. Numerical examples concerning the 
control problem testify about the soundness of the new approach. To 
conclude this paper one takes advantage of the previous analysis to 
give a brief discussion of the wavelet approximation of the Stokes 
problem, for Dirichlet boundary conditions. 8 1992 Academic Press, Inc. 

1. HISTORICAL PERSPECTIVE: 
MOTIVATION AND SYNOPSIS 

Motivated by the wavelet approximation of the Stokes 
problem, with Dirichlet boundary conditions on the velocity, 
we recently undertook (in [ 11) an analysis of the ill-posed- 
ness of the discrete Stokes problems when similar finite 
element approximations and identical meshes are used for 
both velocity and pressure. From that analysis, it appears 
that the ill-posedness of the above discrete Stokes problem 
is due to the strong damping of the high frequency pressure 
modes, beyond a critical wave number. Indeed, the above 
analysis strongly supports the well-known cure of the 
discrete Stokes problem consisting of using qualitatively 
similar finite element approximations for pressure and 
velocity, the pressure one being associated to a mesh twice 
coarser than the velocity mesh (other cures are possible as 
shown in, e.g., [2]). 

Considering now the exact boundary controllability 
problem whose numerical solution is addressed in [ 3,4], it 
follows from J. L. Lions [S-7] that it can be reduced to a 
functional equation whose solution gives the initial data of 
an adjoint wave equation, whose solution will provide in 
turn the exact control we are looking for (this approach is 
fully described in Section 3). The above functional equation 
is associated to an operator which has essentially the same 
properties as the operator that one obtains if one eliminates 
the velocity in the Stokes equations (see Section 2 for 
details); indeed in [4] we have used this similarity since we 
have shown there that both problems can be solved by a 
general conjugate gradient algorithm, well suited to linear 
functional equations in Hilbert spaces for strongly elliptic 
and self-adjoint operators. Actually, the similarity between 
both problems goes beyond the above structural analogy, 
since a straightforward (finite element in space/finite 
difference in time) discretization of the boundary control 
problem yields an ill-conditioned discrete operator r\f’ 
whose dampingproperties are exactly the same than those of 
the discrete Stokes operator (if one uses similar finite 
element approximations and identical meshes for pressure 
and velocity). This analogy clearly suggests that the spirit of 
the cure which works for the Stokes problem (i.e., using a 
pressure mesh twice coarser than the velocity one) may also 
provide a way to eliminate the ill-posedness of the discrete 
boundary control problem. This prediction seems to be true 
as we shall see in Section 4. 

The content of this article is the following: In Section 2 we 
discuss the finite element approximation of the Stokes 
problem for Dirichlet boundary conditions on the velocity. 
In Section 3, we discuss the solution of an exact boundary 
controllability problem for the wave equation, by the J. L. 
Lions Hilbert uniqueness method (HUM) (see [3-71); we 
show in particular that classical finite element in space/finite 
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difference in time implementations of HUM yield discrete 
problems which are ill-posed. We also show that the cure 
used for the discrete Stokes problem provides a discrete 
boundary control problem, which on the basis of the 
numerical experiments of Section 4, is well-posed, uniformly 
in h and At, and gives optimal orders of convergence (the 
conjugate gradient solution of the discrete boundary control 
problem is fully described in Section 3). In Section 5, we 
briefly discuss the application of the concepts of Section 2 to 
the wauefer solution of the Stokes problem for Dirichlet 
boundary conditions on the velocity. Finally, in an 
appendix we discuss the solution of the Stokes problem of 
Section 2 as an application of a fairly general conjugate 
gradient algorithm described in Section 3.5. 

2. THE STOKES PROBLEM AND ITS FINITE 
ELEMENT APPROXIMATIONS 

2.1. Formulation of the Stokes Problem 

Let Q be a bounded domain of IIT’ (d = 2,3 in practice) and 
let r denote its boundary; we suppose that r (and therefore 
Sz) is invariant with time. We suppose next that an incom- 
pressible (very) viscousflow is taking place in Sz modelled by 
the following unsteady Stokes equations 

~-VvutVp=f in Sz, (2.1) 

v.u=o in Q, (2.2) 

u=g on r, (2.3) 

44 0) = uo(x), XEG?. (2.4) 

In (2.1 t(2.4): 

(a) u = {ui}yZ 1 is the velocity, p is the pressure, 

(b) Xc {Xi>:‘=1, v= p~axi)~~l,v2=d=~;~1 a2/axf, 
v. u = c;= 1 aui/axi, 

(c) v( >O) is a viscosity coefficient, f is a density of 
external forces, 

(d) V. u = 0 is the incompressibility condition; it implies 

I 
g.ndT=O, (2.5) 

I- 

where n is the outward unit normal vector at r, and also 

v.u,=o in Sz, (2.6) 

u,.n=g.n onr,att=O (2.7) 

(in (2.5)-(2.7), y . z is the canonical scalar product of R”, i.e., 
Y~Z~C~~~y~zj~vy~{yi}:‘,~~z~{Zj}~~~~E[Wd)~ 

2.2. Time discretization of the Stokes 
problem (2.1)-(2.4) 

With At( >O) a time discretization step, we approximate 
the time dependent Stokes problem (2.1)-(2.4) by the 
following backward Euler scheme (we consider that par- 
ticular scheme essentially for its simplicity, but more 
accurate ones are available leading to the same type of 
elliptic problems at each time step): 

U 
n+I-ull 

At - 
vV21Pf~+Vp*+~ 

1 =fn+l in 0, (2.8 

v.u -0 ??+I- in 52, (2.9 

U 
PItI- 

-g 
n+l on r, (2.10) 

u”= u,; (2.11) 

in (2.8)-(2.10), u”(x) N u(x, q At), p”(x) w p(x, q At), 
fq(x) = f(x, q At), g”(x) = g(x, q At). Clearly, the problems 
to solve at each time step are all particular cases of 

cru-vV+l+Vp=f in G, (2.12) 

v.u=o in Q, (2.13) 

u=g on r, with 
s 

g.ndr=O, (2.14) 
r 

with CI > 0; the solution of (2.12t(2.14) will be discussed in 
the Sections 2.3 and 2.4. 

Remark 2.1. Using operator splitting techniques for the 
time discretization of the full (nonlinear) incompressible 
Navier-Stokes equations leads also to the solution at each 
time step of problems such as (2.12)(2.14), with c1 still the 
reciprocal of a time step (see [4] and the references therein 
for more details). 

2.3. A functional equation satisfied by 
the pressure solution of 
problem (2.12~(2.14) 

If the data f and g are sufficiently smooth then problem 
(2.12)-(2.14) has a unique solution in (H’(Q))dx (L2(Q)/R) 
(typical conditions would bef E (H-‘(Q))“, g E (H”*(T))‘); 
for the definition and properties of the above (Sobolev) 
functional spaces, see [8, 91. From now on, we shall 
consider the unique pressure p belonging to H, where 

qdx=O 

(with dx = dx, . . . dxd). (2.15) 
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The best way to understand the mechanism interrelating 
the pressure and velocity approximations is-from our 
point of view-to eliminate u in (2.12)-(2.14); to do this, we 
first define u. as the unique solution of the Dirichlet system 

!xu,-vV%i,=f in 52, (2.16) 

uo=g on r; (2.17) 

the above function u,, is not related to the one in (2.4). 
We observe that the pressure p satisfies the functional 

equation 

Ap= -V.u,, (2.18) 

where, in (2.18), the (pseudo-differential) operator A is 
defined by 

Aq= -V.((cGvV*)-‘Vq), VqEL*(Q); (2.19) 

in (2.19) the boundary conditions associated to al - vV2 are 
the homogeneous Dirichlet boundary conditions, i.e., 

Aq=Vu,, vq E L2(Q), 

where uy is the solution of the Dirichlet system 

uu,-vv*u,= -vq in Sz, 

II,=0 on r, 

which has a unique solution in (ZYZA(Q))~. We have 

1 
a 

Aqdx=i V.u,dx=j u,.ndT=O, 
R I- 

which implies in turn that 

AqEH, vq E L*(Q); 

we also have, Vq, q’ E L*(Q), 

i, (Aq) q’ dx = c( I, u, .u,, dx + v s, Vu, %I,. dx, 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

which implies, combined to (2.23) that A is a self-adjoint, 
strongly elliptic isomorphism from H onto H (see, e.g., [9] 
for details); thus problem (2.18) has a unique solution in H 
since 

implies that the right-hand side -V . u. of (2.18) belongs 
to H. 

From the properties of A, problem (2.18) (and therefore 
the Stokes problem (2.12)-(2.14)) can be solved by 

conjugate gradient algorithm as shown in, e.g., [l, 4, lo] 
(see also the references therein). In the following Section 2.4, 
we shall discuss the space discretization of operator A. 

2.4. Space approximation of Operator A 

For simplicity, we consider the particular case where 
Q = (0, 1) x (0, 1); we define the space discretization step h 
as h = l/(Z+ 1 ), where Z is a positive integer, and introduce 
the gridpoints M,= {ij,jh}, O<i, j<Z+ 1; the points M, 
can be used to define either finite difference or finite element 
approximations of problems (2.12)-(2.14) and (2.18). 
For further simplicity, we shall consider finite difference 
approximations but the following discussion could have 
been done in a finite element framework, using piecewise 
linear approximations associated to the triangulation of 
Fig. 2.1 and the trapezoidal rule to evaluate integrals like 
u In uw dx in the corresponding variational formulation of 
elliptic systems like (2.16), (2.17) and (2.21), (2.22). 

The pressure p will be approximated by ph = 

~PoIo<r,.,<I+l and those velocity fields v vanishing on r, 
bY vh= (uyIlsi,j<l, with VIE R*. Let us define the discrete 
pressure and velocity spaces P, and V,, by 

Ph={qhIqh=(qij}O~r,j~,+I}r (2.25) 

and 

voh={vhlvh= {V&r,,<,rVr,~~2). (2.26) 

To study the kernel and the damping properties of the 
discrete analogue of operator A it is convenient to introduce 
the following vector bases of P, and VOh : 

B*h= b7hmhbnn= (cosmi71hxcosnj~hjo.,,,.,+,, 

06m, ndZ+ 1) (2.27) 

FIG. 2.1. A regular triangulation associated to the grid points M,. 
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and 

a”,,= {(sinmirrhxsinnjnh,O},Gi,jG,, 

1 d m, n 6 I} u { (0, sin kizh x sin fjzh}, G ,,,< ,, 

1 <k, l<Z}, (2.28) 

respectively. 
The convenience of the above bases is due to the fact that 

their elements are the eigenvectors of matrices which 
approximate (via finite difference discretizations) the 
elliptic operator -V2 for the homogeneous Neumann and 
Dirichlet boundary conditions, respectively. The finite 
difference method to be described below is not used in 
practice (until recently at least) since it is known to be 
unstable. However, since the corresponding discretization is 
very close to the one obtained by finite element methods 
using regular triangulations such the one in Fig. 2.1, and on 
these triangulations piecewise linear approximations for 
both pressure and velocity, we shall consider it in detail. 
Indeed, the crucial part is the way (al- vV2) ~ ’ Vp is 
approximated: 

First, if ph E P, we approximate Vp at M, by 

c~Ph)ij= 
i 

Pi+ IjkPi- 11, Pii+ yhP”- ‘), 

1 < i, j < I. (2.29) 

If we denote by wh the element of V,, approximating 
(al- vV2) -’ Vp, we obtain it via the solution of the linear 
system 

aw,-z (w 
h2 ~+1~+wi~lj+wi,+l+w~j~~~4w~j~ 

= (dPh)q, 1 < i, j < I. (2.30) 

To study the properties of the mapping 

P,+Wh:Ph-+ VOhr (2.31) 

we consider the particular case, where ph = rp,,,,, E Bph; the 
corresponding value of (~?p~)~, denoted by (6q,,),j is then 
given by 

(&,,,), = - F sin mizh x cos njnh, 

sin mch 
___ cos minh x sin njzh 

h 
(2.32) 

Relation (2.32) is the discrete analogue of 

VGjfn,(“ij) = - ( rnz sin mizh x cos njzh, 

rut cos mizh x sin njzh >, 

where the function c$~, is defined by Qm,,(x,, x2) = 
cos m71x L cos nnx, . 

If m = n = Z+ 1, we clearly have (&,,), = 0, Vl < i, j < Z; 
indeed, relation (2.32) tells us more since it follows from 
Fig. 2.2 (where we have visualized, with an appropriate 
scaling, the function mz -+ rnz and its discrete analogue, 
namely the function mn -+ sin mzh/h), that for m, n > 
(I+ 1)/2, the vectors qrnn are strongly damped by the finite 
difference approximation of V defined by (2.29). If we 
consider now the matrix in the left-hand side of (2.30), it is 
quite easy to check that its eigenvectors are either 

(sin mizh x sin njzh, 0} 1 G i, iG I, 1 dm,n<Z, (2.33) 

or 

{ 0, sin mixh x sin njzh } , G i,, G ,, 1 d m, n < Z, (2.34) 

the corresponding eigenvalues being 

4v 
a+2 sin2m~h+sin2n~h . 

> 
(2.35) 

Since wh is obtained by multiplying the right-hand side of 
(2.30) by the inverse of the above matrix, we observe from 
(2.35) that the damping of the high wave number modes of 
ph associated to the discretization of V is further amplified; 
actually the traditional finite difference discretizations of the 
divergence operator have a similar behavior (a related dis- 
cussion concerning spectral approximations of the Stokes 
problem can be found in, e.g., [ 11, 121). 

4. wo F 



To summarize the above analysis we can say that the 
pressure modes such that m and/or n > (I+ 1)/2 are 
strongly damped by the discrete analogue of the operator A 
defined by (2.19); this property implies that spurious 
pressure and velocity oscillations are produced if one relies 
on the above approach to solve the Stokes problem 
(2.12)-(2.14) via (2.18). Actually, the finite element 
approximations of (2.12 t( 2.14), which use the same mesh 
and type of finite elements for pressure and velocity, have 
the same drawbacks that the finite difference method, which 
has been described above (we insist on the fact that this 
method is essentially equivalent to a finite element one, 
using piecewise linear approximations for pressure and 
velocity on triangulations such the one in Fig. 2.1). To 
overcome the above unstability we can either 

(a) Use different types of approximations for pressure 
and velocity 

or 

(b) Use the same type of approximation for pressure 
and velocity, combined to a regularization procedure. 

Approach (a) is well known and is related to the so-called 
inf-sup condition; finite element approximations which 
satisfy it are discussed in, e.g., [lo, 13-181; the main idea 
here is to construct pressure spaces which are “poor” in high 
frequency modes, compared to the velocity space. Figure 2.2 
suggests an obvious remedy which is to use a pressure grid 
which is twice coarser than the velocity grid, and then use 
approximations of the same type on both grids. This obser- 
vation makes sense for finite difference, finite element, and 
wavelet approximations of problem (2.12)-(2.14); the well- 
known (and converging) finite element method obtained by 
using a continuous piecewise linear approximation of the 
pressure (resp. of the velocity) on a triangulation Yh 
(rev. %l2, obtained from & by joining, as shown in 
Fig. 2.3, the midpoints in any T E &) definitely follows the 
above rule. This method is discussed in [ 1,4, 133181 (some 
of the above references show numerical results obtained 
with it). 

Approach (b) which has been recently strongly advocated 
by several authors (see, e.g., [19]), leads essentially to 
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Tychonoff regularization procedures, an obvious one being 
to “regularize” Eq. (2.18) by the following problem (written 
in variational form): 

PEEH1(Q), 

& j” vp,W~+~ (ApJqdx (2.36) 
R R 

= - V.u,qdx, 
i vq E ff ‘(Q), 
D 

where, in (2.36), E is a positive parameter. 
Very good results have been obtained with approach (b) 

(see [ 19]), we prefer, however, approach (a), for the 
following reasons: 

(i) It is parameter free, unlike the second approach 
which requires the adjustment of the regularization 
parameter E. 

(ii) In general, the mesh size is adjusted, globally or 
locally, on the basis of the velocity behavior (boundary and 
shear layer thicknesses, for example). Therefore, compared 
to approach (a), approach (b) will be four times more costly 
(eight times for three-dimensional problems) from the 
pressure point of view, without further gains in accuracy. 

(iii) Multilevels solvers have been recently developed 
for solving problem (2.12)-(2.14); since methods of type (a) 
have also a multilevel structure concerning the approxima- 
tion of pressure and velocity, we think that they are better 
suited than those of type (b) for multilevel solution methods 
such as multigrid. 

(iv) Tychonoff regularization procedures are systematic 
methods for stabilizing ill-posed problems; in most cases, 
the adjustment of the regularization parameter is a delicate 
problem in itself; therefore if there exist alternatives which 
are parameter free we definitely think that the latter are 
preferable, particularly if they are based on an analysis 
of the mechanism producing the unwanted oscillations. 
Actually, we have nothing against regularization proce- 
dures since we have been using them, in [3,4], to solve 
control problems like the one discussed in the following 
Sections 3 and 4; however, as a result of the present analysis, 
we shall discuss in Section 3 (in the spirit of the methods of 
type (a)), new solution methods for the above control 
problems, which are more efficient than those discussed 
in [3, 41. 

FIGURE 23 

2.5. A Remark on the Stokes Problem with 
Periodic Boundary Conditions 

Suppose that Q is the square (0, 1)2 and consider (with c( 
still positive) the following variant of the Stokes problem 
(2.12)-(2.14): 
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au-vV%+Vp=f in Q, 

v.u=o in 52, 

(2.37) 

(2.38) 

4x1, 0) = U(Xl > 11, 

40, x2) = NL x2), O<x,,x,<l, 
(2.39) 

Vu(x, 2 0) = VU(Xl, 1 L 

Vu(0, x2) = Vu( 1, x,), o<x,,x,< 1; 
(2.40) 

the boundary conditions (2.39), (2.40) are of periodic type. 
It is well known (particularly to the spectral methods 

specialists) that solving problem (2.37)-(2.40) is fairly easy; 
however since this fact seems to be much less known to finite 
element people, we discuss here with some detail the 
solution of problem (2.37))(2.40). 

We suppose that fE (L2(Q))2. Taking the divergence of 
both sides of (2.37) we obtain from (2.38) that 

Vp=V.f in Q. (2.41) 

Assuming that p is periodic in the sense of (2.39), (2.40), it 
is also a solution of the following variational problem 

p E p, 1 VpVqdx=j f.Vqdx, V9EP, (2.42) 
R c2 

where P is the subspace of H’(Q), consisting of those 
functions periodic at r in the sense of (2.39). Applying 
the Lax-Milgram theorem (cf., e.g., [ 18, Appendix 11) to 
problem (2.42), we obtain that problem (2.42) has a unique 
solution in P/R (i.e., defined within to an additive constant). 
Oncep is known, we compute u as the solution of the elliptic 
system 

au-vV%=f-vp in Q, (2.43) 

completed by the boundary conditions (2.39), (2.40). 
Problem (2.43), (2.39), (2.40) has a unique solution, whose 
divergence is itself periodic. Denote V. u by cp and observe 
that cp satisfies (from (2.41)) 

cup-vv*fp=o in Q, (2.44) 

which, combined to the periodicity conditions satisfied by 
cp, implies that cp = V . u = 0 in Sz. We have thus solved 
problem (2.37)-(2.40). We observe therefore that solving 
problem (2.37)-(2.40) amounts to solving a fixed small 
number of very simple elliptic problems. 

Actually this simplicity of the Stokes problem (2.37)- 
(2.40) is preserved by discretization; we can use different 
approximation methods to compute pressure and velocity, 
we can use different meshes, we can combine spectral 
methods for one of the unknown function to finite element 

methods for the other, we can also use similar approxima- 
tions on the same grid, etc. This extreme robustness of the 
periodic Stokes problem (2.37)-(2.40) with respect to its 
numerical solution is not shared by the Stokes/Dirichlet 
problem (2.12)-(2.14). However, efficient numerical 
methods for solving problem (2.12)-(2.14) have been 
developed these last years; they combine, for example, 
finite element approximations for pressure and velocity 
(piecewise linear pressure, piecewise quadratic velocity, 
for example) to very efficient preconditioned conjugate 
gradient algorithms like those introduced in [19] and dis- 
cussed with further details in, e.g., [lo, 151. Indeed these 
algorithms are particular cases of a general methodology for 
some class of linear variational problems to be discussed in 
Section 3; therefore, for the sake of completeness we shall 
come back to them in the Appendix and describe there a 
generalization to situations where in addition to Eqs. (2.12) 
(2.13), boundary conditions such as 

i3U 

vKnp=g 

hold on a part of the boundary K 

3. ON THE EXACT BOUNDARY 
CONTROLLABILITY OF THE 

WAVE EQUATION 

3.1. Introduction: Synopsis 

Inverse problems for partial differential equations have 
always been challenging ones, both from the theoretical and 
computational points of view. Indeed, they have the justified 
reputation of being very computer time consuming. Among 
these inverse problems, control problems for partial dif- 
ferential equations occupy a very particular niche, and 
indeed, those last years have seen a renewed interest in exact 
controllability problems for the wave equations and other 
equations modelling vibration and oscillation phenomena, 
such as the Maxwell equations, the equations modelling the 
vibrations of plates, beams, shells, etc. Interest in such 
problems clearly arises from the current advanced projects 
on flexible space structures, stealth aerospace vehicles, etc. 

In this article, we shall discuss the solution of an exact 
boundary controllability problem for the wave equation, 
focussing on approximation issues; the iterative solution 
of the control problem by conjugate gradient techniques 
will be addressed also. Concerning more specifically the 
approximation aspect, it will appear than an efficient way to 
eliminate unwanted numerical oscillations will be to use two 
different grids (as for the Stokes problem (2.12)-(2.14), and 
by a similar spectral analysis). In fact, the methods to be dis- 
cussed in this section provide an efficient and simpler alter- 
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native to the Tychonoff regularization procedure discussed 
in [3,4]. Numerical results will be presented in Section 4. 

A (much) shorter version of this article appeared in [21]. 

3.2. Formulation of the Exact Boundary 
Controllability Problem 

Let Sz be a bounded domain of Rd (da l), with boundary 
r, and for T > 0, let (0, T) be a time interval. We shall use 
the following notation 

x= {x;}:‘=l, dx=dx, . ..dxd. 

v= a 
i I 

d 

ax, L=,’ 

A=v2= i d’ 
i=, 84’ 

au a% 
u*=,,, utr = 2’ 

C=I-x(0, T). 

Also, we denote by u(t) the function x + u(x, t). We 
consider now a physical system governed by the wave 
equation 

Following J. L. Lions [S-7], we reduce the above exact 
controllability problem to the problem of identifying initial 
values for an associated (adjoint, in fact) wave equation. To 
do this we shall use a method due to J. L. Lions called HUM 
(the Hilbert uniqueness method); see [6, 71 for more details. 
Let us introduce E = HA(Q) x L2(Q), E’ = H-‘(Q) x L2(s2), 
and then define A operating over E as follows: 

Take e = {e’, e’} E E and solve from 0 to T 

q u=o in Q 

and satisfying the initial conditions 

(3.1) 

u(x, 0) = uO(x), UI(X, 0) = u’(x) in 52. (3.2) 

The exact boundary controllability problem that we 
consider is to find g defined over C such that taking as 
boundary condition 

q cp=o in Q, (3.5), 

do) = e”, cp,(O) = e1 in G?, W)2 

cp=o on Z; (3.5), 

solve then from T to 0 

o*=o in Q, (3.6), 

$(T)=O, II/,(T)=0 (3.61, in 0, 

U=g on C, 

the solution of (3.1), (3.2), (3.3) will satisfy 

(3.3) 
*=$I on C. 

z 

We finally define A by 

u(x, T) = 0, u,(x, T) = 0 on a. (3.4) A e= {G,(O), -Il/(O)l. 

It follows from [5-7, 22,231, that the above problem has 
a solution if one takes T sufficiently large; indeed, the 
above result will hold with g E L2(C), even for nonsmooth 
initial data u”, u’ (for example, u”~L2(SZ), u’ E H-‘(Q) 
( = waw). 

It is proved in [6,7] that A is a linear and continuous 
operator from E into E’; moreover, if T is sufficiently large 
(T> Tmin ~ diam(fi)), then it is proved in the above two 
references that A is an isomorphism from E onto E’. 

Remark 3.1. The above result is not surprising, since 
Eq. (3.1) describes wave motions with velocity c = 1; from 
that, we can expect that the minimal value of Tfor which the 

Application to the Exact Boundary Controllability of the 
Wave Equation (3.1) for the Intial Conditions (3.2) 

Suppose that u” E L’(Q), u’ E H ~ l(Q). 

exact controllability holds is of the order of diam(G)/c = 
diam(S2), with 

diam( 52) = sup distance( x, y ). 
.x,.vsn 

Theory (cf., e.g., [6,7]) and numerical experiments 
(cf. [3]) justify this prediction; actually if n is a disk of 
radius R (resp. a square with edges of length L) the lower 
bound of those T for which exact controllability holds is 2R 
(resp. L). 

A systematic way for constructing such control g is 
provided by the Hilbert uniqueness method of .I. L. Lions 
(cf. [5-7]), to be described in Section 3.3. 

3.3. Description of the J. L. Lions method: 
the HUM method and the operator A 

(3.6), 

(3.7) 
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Step 1. Take f = { ul, -u”}. 

Step 2. Solve 

//e=f. (3.8) 

Step 3. Solve the associated wave equation (3.5). 

Step 4. Take g= (acp/&z)l,. 

Step 5. Solve the associated wave equation (3.6). 

We have then 

q $=O in Q, *=s on C, 

WI = u”, Icl,(O) = ul, ICI,(T)=O> in 52. 

Taking u = $, it is quite clear that we have computed a g for 
which we have the exact boundary controllability property. 

Further Comments 

1. In the sequel of this paper we shall be mostly 
concerned with the solution of A e = f. 

2. Using the HUM approach we have already men- 
tioned that the original control problem is transformed to 
an identtfication of initial conditions problem. In fact, it can 
be shown (see [6, 71) that problem A e = f is in duality with 
the minimization problem 

where 

min v= dT dt, (3.9) 
LJt %d s z 

@0,={vlv~L2(Z), q y=OinQ,,=,onZ, 

~(0) = u”, Y,(O) = u’, Y(T) = 0, Y,(T) = 0). 

Indeed, the control g built via HUM is the unique solution 
of the minimization problem (3.9). 

3.4. Further properties of A 

3.4.1. Symmetry and Positivity 

Integrating by parts in time and using the divergence 
theorem, we should easily prove that 

= s *4”dTdt, 
L an an 

Ve, E! E E, (3.10) 

where, in (3.10), ( ., . ) denotes the duality pairing between 
E’ and E (i.e., the generalized scalar product between the 

elements of E’ and those of E). It follows from (3.10) that A 
is self-adjoin& and strongly elliptic if T is sufficiently large. 

3.4.2. Asymptotic Behavior 

Suppose that there exist x0 E Sz and C > 0 such that 

x,M~n=C, VMEr, (3.11) 

with n the unit vector of the outward normal at r, at M. 
Domains satisfying (3.11) are easy to characterize geometri- 
cally, simple cases being disks and squares. Now let us 
denote by ln\= the operator A associated to T. It has been 
shown by J. L. Lions [24] (see also Bensoussan [25]) that 

lim &!I=- 1 -A 0 

~-+a: T  c [ 1 0 I' 
(3.12) 

Result (3.12) is quite important for the validation of the 
numerical methods described below, since it easily provides 

lim Te,= {x0, x’}, 
T=.+m 

(3.13) 

where, from (3.12), 

-AxO= cd in Sz, x0=0 on r, (3.14) 

x’ = -cue. (3.15) 

3.5. Conjugate Gradient Solution 
of the Problem A e = f 

3.5.1. Generalities on the Conjugate Gradient Solution of 
Linear Variational Problems in Hilbert Spaces 

Problem A e = f can also be written 

e E E, = (f, c>, Vii E E, (3.16) 

where, in (3.16), ( ., . ) denotes the duality pairing men- 
tioned above. Suppose now that T is sufficiently large, then 
the bilinear form (A ., . ) is, from Section 3.4.1, continuous, 
symmetric, and E-elliptic; i.e., there exists y > 0 such that 

t > 
A 6 5 by WII’E, VEtEE, (3.17) 

with, in (3.17), 

je,,.=(j~(~VP”12+,P1,2)dx)1’2 

Vr!= {e”,e”}~E. 
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Problem (3.16) is therefore a particular case of the family of 
linear variational problems, 

UE v, 4% u) = L(v), QVE V, (PI 

where in (P): 

(i) V is a real Hilbert space for the scalar product ( ., .) 
and the corresponding norm /I . (I. 

(ii) a: V x V--f IF! is bilinear, continuous, symmetric (i.e., 
a(~, w) = a(~,, v), Vu, w  E V) and V-elliptic (i.e., there exists 
a > 0 such that a(~, V) 3 a l/v/l ‘, Vu E V). 

(iii) L: V -+ Iw is linear and continuous. 

With the above hypotheses problem (P) has a unique 
solution (cf., e.g., [ 18, Appendix l]), which can be com- 
puted by the following conjugate gradient algorithm: 

Step 0. Initialization. 

u” E V is given; (3.18) 

solve then 

g”E K (go1 v) = duo, 0) - L(v), VVE v. (3.19) 

If go = 0, or is “small,” take u = u”; if not, set 

w” = go. (3.20) 

Then for n>O, assuming that u”, g”, wn arc known, 
compute un+ ‘, g”+ ‘, wn+ ’ as follows 

Step 1. Descent. Compute 

(3.21) 

and then 

Step 2. 
descent 

U “+LULpn.p. (3.22) 

Test of the convergence and construction of the new 
direction. Solve 

g n+lE v, 

(g ?I+ I, 0) = (g”, 0) - P,4W”, u), QUE V; (3.23) 

ifg n + 1 = 0, or is “small,” take u = u”+ I; if not, compute 

y = Ilgn+‘l12 

n 

llgn112’ 

(3.24) 

and define the new descent direction by 

W n+l= 
g n+‘+ynWH. 

Don=n+landgoto(3.21). 

(3.25) 

If the above assumptions on V, a( ., ), L( .) hold, one can 
prove that, Quo E V, one has 

lim /Iun - uII = 0, (3.26) 
n-r ccc 

where u is the solution of problem (P). In fact, it follows 
from [26] that we also have 

n, (3.27) 

where the condition number v, of a( ., .) is defined by 

vu = a(& 0) 4% v) 
sup jipI”E Ef:o: (lull* “E Y- {O} 

Remark 3.2. For finite dimensional problems (P), 
algorithm (3.18)-(3.25) is nothing but a preconditioned 
conjugate gradient algorithm for solving a linear system. 

Remark 3.3. The choice of a proper scalar product over 
V is a critical factor for the convergence properties of the 
conjugate gradient algorithm (3.18)-(3.25); indeed we 
expect from ( ., .) to be sufficiently close to a( ., .) so that the 
above condition number v, will be of the order of 1; on the 
other hand, to make algorithm (3.18)-(3.25) of practical 
interest the linear problems associated to (., .) (such as 
(3.19) and (3.23)) have to be much cheaper to solve than the 
ones associated to a( ., .). The art of preconditioning is 
precisely to find the right compromise between these 
seemingly contradictory properties of the scalar product 
(., .). It seems that in the particular case of the control 
problem presently discussed (and also of the Stokes 
problem (2.12)-(2.14) ( see the Appendix)) the right scalar 
product has been identified. 

Remark 3.4. Back to the practical implementation of 
algorithm (3.18)-(3.25), by go (resp. g”+‘) “small” we 
essentially mean that go (resp. g” + ‘) satisfies 

ll~“ll/ll~oll GE (rev. Ilg”+‘Il/l/gOll GE), (3.28) 

where E is a small positive number depending upon the 
floating point arithmetic used by the computer; we have 
been quite successful, taking E = lo-’ in (3.28) when 
running on the CRAY X-MP. 

3.5.2. Application of the Conjugate Gradient Algorithm 
(3.18)-(3.25) to the Boundary Control of the Wave 
Equation, via the Solution of Problem A e = f 
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Applying the general conjugate gradient algorithm Step 1. Descent. Solve 
(3.18)-(3.25) to the solution ofA e = f, via (3.16), is possible 
if T is sufficiently large; indeed, it suffices to take 

V=E, 

a(.,.)=(/\., .), L:6-+ ((u’, -uO},~). 

tlcj,=o in Q, @,=O on C, 

% (0) = WA, 
(3.36) 

cp,,(O) = wI1> 

On E, we shall use as scalar product 

{v,w}~~~(Vv”-Vwo+uln”)dn, 

Vv, w  E E. (3.29) 

We obtain then the following conjugate gradient algorithm: 

Step 0. Initialization. 
and set 

ez E HA(Q) and e: E L2(Q) are given; (3.30) 

solve then 

q q,=o 

cp0(0) = 4, 

and 

in Q, 
Compute now 

cpo=o on C, 

q $,=O in Q, 

$“2y on C, (3.37) 
z 

$,(T)=O, $T)=O, 

84, - v*gjl = at (0) in Q, 
(3.38) 

g=o on r, 

%(O)=eh, 

q l+b,=o in Q, 

tio(T)=Q $T)=O. 

Compute go = {g& g;} E E by 

-v2g$$(o)-u1 in 52, 

g;=o on r, 

g:, = u” - $0(O), 

respectively. Set then 

(3.31) 

2: = -4,(O). (3.39) 

(3.40) 

e n+l =en-pp,w,, 

(P”+l=(Pn-PPn(P”r 

(3.41) 

(3.42) 

* n+l=lCln-fPn$“? (3.43) 

g n+1=gn-PnEn. (3.44) 
(3.32) 

Step 2. Test of the convergence and construction of the new 
descent direction. If gn+ i = 0, or is small, take e = e,, i, 
(P=(P~+~, IC/=i++n+l;ifnot, compute 

1’.=~n(lVg~+,12+lg,:+l/2)dx 
Sn Wgjll”+ Idl’W ’ 

(3.45) 

(3.33) and set 

(3.34) Wn+l =gn+1 +Ynw,. (3.46) 

Do n = n + 1 and go to (3.40). 

wo=go. (3.35) Remark 3.5. It appears at first glance that algorithm 
(3.30)-(3.46) is quite memory demanding since it seems to 
require the storage of (l@,/&)lZ (in practice the storage of 

Now, for n 3 0, assuming that e,, g,, w,, (P,,, $, are known, a&/an over a discrete-but still large-subset of Z). In fact, 
computee,+l,g,+l,w,+,,cp,+l,~,+,a~follow~: we can avoid that storage problem by observing that since 



ENSURING WELL-POSEDNESS BY ANALOGY 199 

the wave equation in (3.36) is reversible we can integrate 
simultaneously, from T to 0, the wave equation (3.37) and 

q @,=O in Q, 
@,=O on Z, 

G,(T) and % (T) known from the integration 
(3.47) 

of (3.36) from 0 to T, 

In the particular case where an explicit scheme is used for 
solving the wave equations (3.36), (3.37), and (3.47) the 
extra cost associated to the solution of (3.47) is negligible 
compared to the saving due to not storing (&j,/&z)lZ. In 
fact, the above conclusion still holds if one uses a convenient 
implicit scheme. 

3.6. Discretization of the Boundary 
Control Problem 

3.6.1. Generalities 

A finite element/finite difference approximation of the 
above boundary control problem is discussed in [3]. At the 
present moment, we shall concentrate on the case, where 
Q = (0, 1)’ and where finite difference methods are used 
both for the space and time discretizations. Indeed, these 
approximations can also be obtained via space discretiza- 
tions associated to finite element grids like the one shown 
on Fig. 2.1 (we should use, as shown in [3], piecewise 
linear approximations and numerical integration by the 
trapezoidal rule). 

Let I and N be positive integers; we define h (space 
discretization step) and At (time discretization step) by 

h = l/(1+ l), At = TIN, (3.48) 

respectively, and then denote by M, the point { ih,jh >. 

3.6.2. Approximation of the Wave Equation (3.5) 

Let us consider the wave equation (3.5) i.e., 

clcp=o in Q, q=o on C; 

dx, 0) = e’(x), (3.49) 

cp,(x, 0) = e’(x) on R. 

With ‘p”, an approximation of cp(M,, n At), we approximate 
(3.49) by the following explicit finite difference scheme: 

(Pnk,=o if M,, E r, (3.50), 

‘pz = eO(M,), 

cp~-cpl~‘=2Ate’(Mij), 1 < i, j < I. 
(3.50), 

The above scheme satisfies the stability condition 

Atdh@. (3.51) 

3.6.3. Approximation of (&p/&t)\ z 

Suppose that we want to approximate &p/an at ME r, as 
shown in Fig. 3.1. Suppose that cp is known at E; we shall 
then approximate a&h at M by 

~W)- WI - cp( WI 2h (3.52) 

In fact, cp( E) is not known since E $8. However-formally 
at least-q = 0 on Z implies qr, = 0 on C, which combined 
with qlt - AT = 0 implies Av = 0 on 2; discretizing this last 
relation at M yields 

cp( W + v(E) + cp(S) + V(N) - 4~04) = o 
h2 

(3 53) 
. . 

Since N, M, S belong to r, (3.53) reduces to 

d W = -go(E), 

which combined to (3.52) implies that 

(3.54) 

cp(W o-‘Pw)ym)-cpw) 
h h 

(3.55) 

In that particular case, the symmetric approximation (3.52) 
(which is second-order accurate) coincides with the one- 
sided one in (3.55) (which is only first-order accurate, in 
general). In the sequel, we shall use, therefore, (3.55) to 
approximate &p/an at M and we shall denote by 6,,~ the 
corresponding approximation of &p/an at M,, E I-. 

l<i,j<I,O<n<N, (3.50), FIGURE 3.1 
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3.6.4. Approximation of the Wave Equation (3.6) 

Similarly to (3.5), the wave equation (3.6) will be 
approximated by 

I&‘++;+‘-2*; 

IAtl’ 

$:+lj+$:‘-lj+$~+l+ti~-l-4+~=o 

h2 3 

1 <i,j<Z,n=N, N-l, . . . . 0, (3.56)1 

*;I-1 = 6lJP” if M,, E r, (3.5612 

=o, 1 <i,j<Z. (3.56), 

3.6.5. Approximation of A 

Starting from 

and via the solution of the discrete wave equations (3.50) 
and (3.56) we approximate A e by 

l<i,js,’ (3.57) 

It is proved in [3, pp. 17-191 that we have (with obvious 
notation) 

= h At 5 a, C bkl(pn~kl@‘, (3.58) 

where, in (3.58), a0 = CI~ = $, tc,, = 1, Vn = 1, . . . . N- 1, and 
where r* = rminus the four corners (0, 0}, (0, l}, { 1, 0}, 
{ 1, l}. It follows from (3.58) that r\f’ is symmetric and 
positive-semidefinite. Actually, it is proved in [3, Sec- 
tion 6.21 that A;;” is positive definite if T > Tmin zz At/h. This 
property implies that if T( >O) is given, it suffices to take 
At/h sufficiently small to have the exact boundary 
controllability for the discrete wave equation. This property 
is in contradiction with the continuous case where the exact 
controllability property is lost if T is too small (T < 1 here). 
The reasons for this discrepancy will be discussed in the 
sequel. 

3.6.6. Approximation of A e = f 

With fh a convenient approximation off = { ul, -u”}, we 
approximate problem A e = f by 

$ e,=f,. (3.59) 

In [3, Section 6.31, one may find a discrete variant of the 
conjugate gradient algorithm (3.30)-(3.46) which can be 
used to solve the approximate problem (3.59). 

3.7. Numerical Solution of a Test Problem; 
Ill-Posedness of the Discrete Problem (3.59) 

Following [3, Section 7; 4, Section 3.71 we still consider 
the case Q = (0, 1)2, with T= 15/4 $ (strictly larger than 

diam(Q) = $) and e”, e1 defined by 

e”(x,, x2) = sin 7tx1 sin 7cx2, e1 = TC J? e”. (3.60) 

It is shown in [3, Section 71 that using separation of 
variable methods we can compute a Fourier Series expansion 
of f = A e. The functions u”( = -f ‘) and u’( = f ‘) (both 
computed by fast Fourier transform) have been visualized 
on Figs. 3.2 and 3.3, respectively. From these figures, u” is a 
Lipschitz continuous function which is not Cl; similarly, u1 
is bounded but discontinuous. On Fig. 3.4, we have shown the 
graph of the function 

FIG. 3.2. u’(x, , 0.5). 
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FIG. 33. u’(x,, 0.5). 

where cp, given by 

x sin 71x1 sin 7cxZ, (3.61) 

is the solution of the wave equation (3.5) when e” and e’ are 
given by (3.60); we recall that (dy$%)[, is precisely the 
Dirichlet control given by HUM (cf. Section 3.3) if the 
initial conditions u” and u1 satisfy (u’, - z4”} = A e. 

The numerical methods described in Sections 3.5 and 3.6 
have been applied to the solution of the above test problem 
taking At = h/a. Interesting enough, the numerical results 
deteriorate as h and At converge to zero; moreover, taking 
At twice smaller, i.e., At = h/2 $, does not improve the 
situation. Also, the number of conjugate gradient iterations 
necessary to achieve convergence increases as h and At 
decrease. Results of our numerical experiments have been 
summarized in Table I. 

In Table I, ey , e:, and g, are the computed values of eO, e’, 
and g, respectively, where g = (i3cp/&r)I Z, cp being the solu- 
tion of the wave problem (3.5) associated to the solution e 
of A e = f (i.e., g is the optimal Dirichlet boundary control). 

The most striking fact coming from Table I is the 
deterioration of the numerical results as h and At tend to 
zero; indeed, for h = & the convergence was not achieved 
after 1000 iterations. This deterioration is obvious from 
Fig. 3.5 to 3.13, which show for h = A, $, & comparisons 
between the exact solutions and the computed ones: we 
have plotted on these figures the values of e”, ez, e’, ej. for 
x2 = 0.5, and also the variation over [0, r] of ~~g(t)~~L~~r, 
and l\g,.(n At)llLZCrj (for rz =O, . . . . N). We observe that for 
h = & the variations of ez and ei are so large that we have 
been obliged to use a very large scale to be able to picture 
them. 

If for the same values of h one takes a smaller At than 
h/$ the results remain practically the same. In Section 3.8, 
we shall try to analyze the reasons of this deterioration of 

TABLE I 

h 0 l/l6 l/32 l/64 l/128 

Number of conjugate gradient iterations 20 38 84 363. No convergence 

IW - 4 II L*cR) 0.42 x 10-l 0.18 x 10-l 0.41 x 10-l 3.89 No convergence 

Ileo - 4 II N;(o) 0.65 0.54 2.54 498.1 No convergence 

Ile’ -4 IILvO) 0.20 0.64 x 10-l 1.18 170.6 No convergence 

Ilk?- gclL2w, 0.51 0.24 0.24 1.31 No convergence 

II gc II L$r) 7.320 7.395 7.456 7.520 No convergence 

581/103/2-2 
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FIG. 3.5. Variations of e’(x, ,0.5)(-) and ep(x, ,0.5)( ) (h = h). FIG. 3.6. Variations of e’(x, , OS)(-) and eJ(x, ,0.5)( ) (h = &). 

the numerical results as h -+ 0 and also to give cures for this 
problem. 

To conclude this section we observe that the computed 
results are quite good for h = h and also that the error 
II g - gc II L$r) deteriorates much more slowly as h + 0 than 
the errors e”-ez, e’-eh; in fact, the approximate values 
II g, II L*(2) of II Al LQ) are quite good, even for h = f if one 
realizes that the exact value of 11 g/l r2CZj is 7.38668.. . ; these 
relatively good results concerning the behavior of g, are 
clear from Figs. 3.7, 3.10, 3.13. 

3.8. Analysis and Cure of the Ill-Posedness 
of the Approximate Problem (3.59) 

It follows from the numerical results discussed in Sec- 
tion 3.7, that when h decreases to zero, the ill-posedness of 
the discrete problem is getting worse. From the oscillatory 
results shown in Figs. 3.5 to 3.13 it is quite clear that the 
trouble lies with the high frequency components of the 
discrete solution or, to be more precise, with the way the 
discrete operator r\;l’ acts on the short wave length compo- 
nent of e,,. Before analyzing the mechanism producing those 
unwanted oscillations let us introduce a vector basis of 
Wxr, well suited to the following discussion. This basis L+?#~ 
is defined by 

(3.62) 

where 

wPq= {sinpkh x sin qzjh},,i,jG,; (3.63) 

From the oscillatory results described in Section 3.7 it is 
reasonable to assume that the discrete operator r\;2’ damps 
too strongly those components of eh with large waue 
numbers p and q; in other words, we can expect that if p 
and/or q are large, then /\;;‘I ( wPq, 0} or r\i’ { 0, w,,} will be 
quite small implying in turn (this is typical of ill-posed 
problems) that small perturbations of the right-hand side 
of the discrete problem (3.59) can produce very large 
variations of the corresponding solution. 

Operator r\i’ is a fairly complicated one (see Section 3.6 

l.0 

we recall that h = l/(1+ 1). FIG. 3.7. Variations of IIg(t))IL2&--) and IIge(l)IIL~~r~( ... ) (h = &). 
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FIG. 3.8. Variations of e”(x, ,0.5)(-) and ez(x, ,0.5)( ) (h = 4). 

for its precise definition) and we can wonder which stage in 
it is particularly acting as a low puss filter (i.e., selectively 
damping the large wave number components of the discrete 
solutions). Starting from the observation that the ill-posed- 
ness persists, if for a fixed h we decrease At, it is then natural 
(and much simpler) to consider the semi-discrete case, 
where only the space derivatives have been discretized. 

In such a case, problem (3.5) is discretized as follows 
(with ci, = &pjat, I$ = d2q/at2) if 52 = (0, 1)2 as in Section 3.6: 

FIG. 3.9. Variations of e’(x, , 0.5)(-) and e:(x, ,0.5)( ) (h = A), 

FIG. 3.10. Variations of (1 g(t) I) L2crj(-) and II g,(t)11 L~Y)( ‘. ) (h = $I). 

@- (Pi+ lj +cPi-lj+cPij+l+cP~-I-4Vjj 

h2 
= 0, 

1 < i, j < Z, (3.64), 

(PM=0 if (kh, Ih 1 E r, (3.641, 

cp,(O) = ez(ih,jh), 

c$~(O) = eL(ih,jh), Vi,j, l<i,j<Z. 
W4), 

FIG. 3.11. Variations of e’(x, ,0.5)(-) and ep(xl, 0.5)( ) (h = &). 



204 R. GLOWINSKI 

-1 

FIG. 3.12. Variations of e’(x, ,0.5)(-) and eb(x, ,0.5)( ) (h = A). 

Consider now the particular situation, where 

4 = wpq, ek = 0. (3.65) 

Since the vectors wPq are for 1 < p, q d Z, the eigenvectors 
of the discrete Laplace operator occurring in (3.64), and 
that the corresponding eigenvalues A,,(h) are given by 

pz 2 + sin2 qn 2 , (3.66) 
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FIG. 3.13. Variations of 11 g(r)llLzcr)(-) and IIg,(t)llLzcr,( .. .) (h = &). 

we can easily prove that the solution of (3.64), (3.65) is 
given by 

vii(t) = sinprcih sin qnjh cos(dm t), 

o<i,j<z+ 1. (3.67) 

Next, we use (3.55) (see Section 3.6.3) to compute, from 
(3.67), the approximation of &/&I at the boundary point 
M, = (0, jh}, with 1 <<j < I; thus, at time t, d(p/LJn is 
approximated at M, by 

= - i sin pnh sin q?rjh cos(Jm t). (3.68) 

If 1 d p G Z, the coefficient K,(p) defined by 

sin pzh 
uP)=h (3.69) 

is an approximation of pn which is second-order accurate 
(with respect to h); now if p - Z/2 we have K,(p) - Z, and if 
p = Z we have (since h = l/(1+ I)) KJZ) - rc. 

Back to the continuous problem, it is quite clear that 
(3.64), (3.65) is in fact a semi-discrete approximation of the 
wave problem 

,(xpo”O: I rin prr:” :n ,d = O 

on C 
(3.70) 

1 25 (P,(x, 0) = 0. 

The solution of (3.70) is given by 

cp(x, t) = sinprrx, sin qrcx2 COS(TC JR t). (3.71) 

Computing (@/&)I z we obtain 

2 (MO,> t) 

= - pz sin qnjh cos(x dm t). (3.72) 

We observe that if p + Z and q 4 Z, then (&y/&)(M,,-, t) 
and 6q,(M,, t) are close quantities. Now, if the wave 
number is large, then the coefficient K(p) = zp in (3.72) is 
much larger than the corresponding coefficient K,(p) in 
(3.68); we have actually 

Figure 2.2 of Section 2.5 still applies for the present situa- 
tion (replace m by p) and shows that for p, q > (I + 1)/2, the 
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approximate normal derivative operator introduces a very 
strong damping. We should have obtained similar results by 
considering, instead of (3.65), initial conditions such as 

ei=O, e; = wpy. (3.73) 

From the above analysis it appears that the approximation 

of (W~n)lz, which is used to construct operator r\$‘, 
introduces a very strong damping of the large wave number 
components of eh. 

Possible cures for the ill-posedness of the discrete 
problem (3.59) have been discussed in [3, 41. Reference 
[3], in particular, contains a detailed discussion of a bihar- 
manic Tychonoff regularization procedure, where problem 
A e = f is approximated by a discrete version of 

eMe,+/\e,.=f in C2, (3.74), 

de: = ef = ed = 0 on r, (3.74), 

with eE = {ef, ei }, and where, in (3.74), operator M is 
defined by M = ( “,’ _“, ). 

Various theoretical and numerical issues associated to 
(3.74) are discussed in [3], including the choice of E as a 
function of h; indeed elementary boundary layer considera- 
tions show that E has to be of the order of h2. The numerical 
results presented in [3,4] validate convincingly the above 
regularization approach. 

Also, in Ref. [3, p. 421, we suggest that mixed finite 
element approximations (see, e.g., [27] for an introduction 
to mixed finite element methods) may improve the quality 
of the numerical results; one of the reasons for this potential 
improvement is that mixed finite element methods are 
known to provide accurate approximations of derivatives 
and also that derivative values at selected nodes (including 
boundary ones) are natural degrees of freedom for these 
approximations. As shown in Ref. [28], this approach 
reduces substantially the unwanted oscillations, since 
without any regularization good numerical results have been 
obtained using mixed finite element implementations of 
HUM. The main drawback of this method is that (without 
regularization) the number of conjugate gradient iterations 
necessary to achieve convergence increases (slowly) with h 
(in fact, roughly, as hk”2); it seems, also, on the basis of 
numerical experiments, that the level of unwanted oscilla- 
tions increases (slowly, again) with T. 

Several other possible cures are listed in Ref. [3], except 
the obvious one, clearly suggested in the above reference by 
[3, p. 41, Fig. 9.11 (which is essentially our Fig. 2.2). This 
new (and simpler) cure consists of eliminating the short 
wave length components of e,, with wave numbers p and q 
larger than (I+ 1)/2; to achieve this radical filtering it suf- 
fices to define e,, on a finite difference grid of step size > 2h. 

Justifying therefore the title of the present paper, this cure 
was inspired to us by the striking similarity between the 
damping mechanisms associated to the “naive” approxima- 
tions of both the discrete Stokes problem and the present 
boundary control problem, and then by the way one can 
stabilize the Stokes problem, as shown in Section 2.5 
(approach (a)). A finite element implementation of the 
above filtering technique is discussed in the following 
Section 3.9; also, for the calculations described in Section 4, 
we have defined eh over a grid of step size 2h. 

3.9. A Finite Element Implementation of 
the Filtering Technique of Section 3.8 

3.9.1. Generalities 

A most natural fashion to combine HUM and the 
filtering technique discussed in Section 3.8 is to use finite 
elements for the space approximation; actually, as shown in 
Ref. [3, Section 6.21, special triangulations (like the one 
shown in Fig. 2.1) will give back finite difference approxima- 
tions closely related to the one discussed in Section 3.6. For 
simplicity, we suppose that D is a polygonal domain of iw2; 
we introduce then a triangulation Yh of 52 such that 
6=U TE Y,, T, with h the length of the largest edge(s) of &. 
From Yh, we define Yh,2 by joining (see, again, Fig. 2.3), the 
midpoints of the edges of the triangles of &. With P, the 
space of the polynomials in two variables of degree d 1, we 
define the spaces Vh and VOh by 

V,=~U~VEC~(~),V(~EP,,VTE~~}, 

Voh= (0 IDE v/h, vl,=O}; 
(3.75) 

similarly, we define Vh12 and Voh12, by replacing h by h/2 
in (3.75). We observe that V, c Vh,2, V,, c VOhlZ. We 
approximate then the L’(SZ)-scalar product over V, by 

(~2 w)h = 4 c WQV(Q) w(Q)> Vu, w E V,, (3.76) 
Q 

where, in (3.76), Q describes the set of the vertices of Yh and 
where wp is the area of the polygonal domain, union of 
those triangles of &, with Q as a common vertex. Similarly, 
we define ( ., .)h,2 by substituting h/2 to h in (3.76). 

3.9.2. Approximation of A e = f 

We approximate the fundamental equation A e = f by the 
following linear variational problem in V,, x V,, : 

ehE ‘Oh x vOh, 

Af(e,, v) = (22, v”) - i’ u”vl dx ? (3.77) 
R 

vv = (00, v’} E VOh x v,,. 
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In (3.77), ( ., . ) denotes the duality pairing between 
H-‘(Q) and HA(Q), and the bilinear form A,“‘( ., .) is 
defined as follows 

where in (3.84), ni and 2: belong both to VOh12 and satisfy 

(i) Take z,, = {z:, zi} E VOh x VOh and solve, for 
n = 0, . . . . N, the discrete wave equation VP interior vertex of Y&2. 

‘P:+l E VOh,2, 

(cp ;+‘+cp~-‘--43~,4,,, 

+ IAt12j V&.Vvdx=O, Vu E Voh,z, (3.78) 
n 

Following [3, Section 61 we can prove that 

N . 

veh~~~EvOhX VOh, (3.86) 
with the initial conditions 

cp:=z:, cp:, - (p;’ = 2At z;. (3.79) 

(ii) To approximate &p/an over Z; first introduce the 
complementary subspace Mh12 of V0,,,2 in V,,,2 defined by 

where, in (3.86), a0 = ~1~ = 1 and c(, = 1 if 0 < n < N. 

Mh,2= {v IVE V,,/2, vIT=O, 

YTE Yh,2 such that aTn r= a}, (3.80) 

and observe that MhlZ is isomorphic to the space y Vh,2 of the 
traces over r of the functions of VhlZ ; the approximation of 
(&@)I r at t = n At is then defined (cf. [3]) by solving the 
linear variational problem 

It follows from (3.86) that E,,d’( ., .) is symmetric and 
positive semi-definite. As in [3, Section 6.21, we should 
prove that ,I;‘( ., ) is positive definite if T is sufficiently large 
and if Q is a square (or a rectangle) and &, Yh,2 regular 
triangulations of Q. From the properties of A,“‘( ., .) the 
linear variational problem (3.77) (which approximates 
A e = f) can be solved by a conjugate gradient algorithm 
operating in V,, x VOh. This algorithm is described in 
Section 3.9.3. 

3.9.3. Conjugate Gradient Solution of the Approximate 
Problem (3.77) 

wEYvh,2; 

j. dq;vdr=[ Vq;.Vvdx, 
(3.81) 

Vu E Mh,2. 
r R 

Variants of (3.81), leading to linear systems with diagonal 
matrices are given in [3]. 

(iii) Now, for n = N, N- 1, . . . . 0, solve the discrete wave 
equation 

The conjugate gradient algorithm for solving problem 
(3.77) is a finite element implementation of algorithm 
(3.30)-(3.46) (see Section 3.5.2); it is also a simple variant of 
algorithm (6.22t(6.44) described in [3, Section 6.31. 

DESCRIPTION OF THE CONJUGATE GRADIENT ALGORITHM. 

Step 0. Initialization. 

e:E VOh, 4E V0h are given; (3.87) 

VT’ E Vh,2? 
*;-1&p;- on r, 

(‘+cl+*;:+l -w;> V)h,2 (3.82) 

+ lAt12f V$;:-Vvdx=O, VVE VOh,2, 
R 

solve then, for n =O, 1, . . . . N, the discrete forward wave 
equation 

initialized via 
+j V&.Vvdx=O, 

R 

‘+o, II/,“+‘-$y=o. (3.83) 

(iv) Finally, define n;l’( ., .) by 

v’le votl,2; (PO n+l E VOh,2, 

initialized by 

vt=eZ, qA-q;‘=2AteA, 

and store cpf, ‘pt+‘. 

%3% VI = (XT VO),,, + ($9 U1)h,2, 

vv= (VO, U’)E v,,x VOh, 
(3.84) 

(3.88) 

(3.89) 
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Then for n = N, N- 1, ..,, 0, compute go;f, 6~:, $;f- ’ by 
backward (discrete) time integration, as follows: 

(i) If n = N compute 6~; from ‘p: using (3.81). 
If n < N, compute first q;f by solving 

initialized by 

vv E VOh,2; (Pk -n+ ’ E VOh,2, (3.96) 

+ Vrp;l+‘Vvdx=O, 
.r R 

‘pi = WE, cp; - (p;’ = 2At w;, (3.97) 

(3.90) and store Cp,“, @,“‘I. 
Then for n = N, N- 1, . . . . 0, compute Cp”,, &jz, $nk-’ by 

and then &p;l by using (3.81). 

(ii) Take II/;; = 6& on r and use 

$;;-‘+l&+‘-2$;1 

lAtl* ” h/2 > 

+j V$;;.Vvdx=O, vv E VOh,2, (3.91) 
R 

backward time integration as follows: 

(i) If n = N, compute 6@: from Cp,” using (3.81). 

If n <N, compute first Cp; by solving 

” h/2 > 

+/J’@;+‘Vvdx=O, 

to compute the values taken by $;f- ‘( E Vh/2) at the interior 
vertices of 5h,2. These calculations are initialized by 

(3.98) 

l+q(P)=O, (l&y-Ii/o”-‘)(P)=O, 
and then 6@: by using (3.81). 

(ii) Take 6: = B@t on r and use 
VP interior vertex of &,2. (3.92) 

( 

$;-‘+&p-2$; 

Compute then g, = { gi, gh> E V,,, x V,, by solving the IAtl’ ” h/2 > 

discrete Dirichlet problem 
+ V$;:Vvdx=O, 

I vv E VOh,2> (3.99) 

& vOh, 
R 

I 
Vg;Vvdx= t+dJ,’ to compute the values taken by Il/;- ‘( E Vh,*) at the interior 

n 2At ’ ’ ,,,2 > 
- <“J v>, (3.93) vertices of5 h,2. These calculations are initialized by 

vv E VOh, 
M,“” - 4r’)W 

and then = tj,“( P) = 0, VP interior vertex of Y&2. (3.100) 

& vOh, 
Compute now gk( = { g:, g:} ) E VOh x VOh by 

(cd> v)h = i, 

(3.94) 
u”V dx - (11/:, v),,,, vu E v,,. 2: E VOh> 

If go = 0, or is small, take eh = e,; if not set I R 
V&V~dx=[‘$--“, uj,,,, VVE Voh, 

wo=go. (3.95) 2: E vOh, 

Then, for k b 0, assuming that ek, gk) wk) (Pk) $k are known, 
(& O)h = -($:Y v)h,2> vu E VOh, 

com~uteek+~7~k+~~wk+l~~k+l~$k+lasfo1~ows: and then Pk by 

(3.101) 

(3.102) 

Step 1. Descent. For n = 0, 1, . . . . N, solve the discrete 
forward wave equation 

jn lvt$12 dx+ k:, g:,, 

Pk=SnV~~.Vw::dx+(R:,W:)h’ 
(3.103) 
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Once pk is known, compute 

e k+1=ek-PkWk9 

(Pk+l=(Pk-Pk(Pkt 

* k+l =$k-Pk$kr 

(3.104) 

(3.105) 

(3.106) 

gk,l=gk-Pkgk. (3.107) 

Step 2. Test of the convergence and construction of the new 
descent direction. If g, + , = 0, or is small, take e,, = ek + , , 
(Ph=(Pk+l, lClh=*k+I;ifnot,compute 

ji Ivg~+I(2dx+(g:+I,g:+,)h, (3 108) 
Yk= Jn lVg~12dx+k:~g:)h ’ 

and set 

wk+l=~k+l+~kWk~ 

Do k = k + 1 and go to (3.96). 

(3.109) 

Remark 3.6. The above algorithm may seem a little bit 
complicated at first glance (23 statements); in fact, it is fairly 
easy to implement, since the only non-trivial part of it is the 
solution (on the coarse grid) of the discrete Dirichlet 
problems (3.93) and (3.101). An interesting feature of algo- 
rithm (3.87)-(3.109) is that the backward integration of the 
discrete wave equations (3.88) and (3.96) provides a very 
substantial computer memory saving. To illustrate this 
claim, let us consider the case where 52 = (0, 1) x (0, l), 
T= 2 $, h = &, At = h/2 $ = fi/256; we have then- 
approximately-( 5 12)* discretization points on C, therefore 
in that specific case, using algorithm (3.87)-(3.109) avoids 
the storage of 2.62 x 1 O5 real numbers. The saving would be 
even more substantial for larger T and would be an absolute 
necessity for three-dimensional problems. 

Remark 3.7. The above remark also shows the interest 
of the HUM approach from a computational point of view. 
In the original control problem, the unknown is the control 
g which is defined over C; using HUM, the unknown is then 
the solution e of A e = f. If one considers again the par- 
ticular case of Remark 3.6, i.e., Q = (0, 1) x (0, l), T= 2 a, 
h = Q, At = h/2 $, the unknown g will be approximated 
by a finite dimensional vector with 2.62 x lo5 components, 
while e is approximated by eh of dimension 2 x (63)2 = 
7.938 x 103, a substantial memory saving indeed. Numerical 
results obtained using algorithm (3.87)-(3.109) will be 
discussed in Section 4. 

4. EXPERIMENTAL VALIDATION OF 
THE FILTERING PROCEDURE OF 

SECTION 3.9 VIA THE SOLUTION OF 
THE TEST PROBLEM OF SECTION 3.7 

We consider in this section the solution of the test 
problem of Section 3.7. The filtering technique discussed in 

Section 3.9 is applied with yh a regular triangulation like the 
one shown in Fig. 2.1; we recall that yh is used to 
approximate eh, while cp and $ are approximated on yh,2 as 
shown in Section 3.9. Instead of taking h to be equal to the 
length of the largest edges of &, it is convenient here to take 
h as the length of the edges adjacent to the right angles of 
&. The approximate problems (3.77) have been solved 
by the conjugate gradient algorithm (3.87)-(3.109) of 
Section 3.9.3. This algorithm has been initialized with 
ei = eh = 0 and we have used 

as stopping criterium (for calculations on a CRAY X-MP). 
Let us mention also that the functions u”, u’, g of the test 

problem of Section 3.7, satisfy 

II4 Lzcaj = 12,92 . . . . . I(u’/I,-l(n) = 11.77 . ..) 

II gll Lzc2j = 7.38668 . . . . 

In the sequel, we shall denote by II . /I o,n, I . I ,,R, II . II ~ ,,R, 
II .IIo,z. the L2(Q), HA(Q), H-‘(Q), L2(C) norms, respec- 
tively (here Iv] l,R = (so IW* dxP2 and II~II -I,R = I4 l,R, 
where weHA is the solution of the Dirichlet problem 
-Aw=vinSZ,w=Oonr). 

To approximate problem A e = f by the discrete problem 
(3.77) we have been using h= i, $, L I 1 and 
At=h/2,/? (. 

169 32, 64 

since the wave equations are solved on a 
space/time grid of step size h/2 for the space discretization 

and h/2 $ for the time discretization); we recall that 
T= 1514 a. 

Results of our numerical experiments have been sum- 
marized in Table II. In this table, ez, et., g,, are defined as in 
Section 3.7, and the new quantities ~9, ui are the discrete 
analogues of -+(O) and (cY$/at)(O), where + is the solution 
of (3.6), associated via (3.5), to the solution e of A e = f. 

Comparing the above results to those in Table I, the 
following facts appear quite clearly 

(i) The filtering method described in Section 3.9 has 
been a very effective cure to the ill-posedness of the 
approximate problem (3.59). 

(ii) The number of conjugate gradient iterations 
necessary to achieve the convergence is (for h sufficiently 
small) essentially independent of h; in fact, if one realizes 
that for h = & the number of unknowns is 2 x (63)* = 7938, 
converging in 12 iterations is a fairly good performance. 

The results of Table II compare favorably with those 
displayed in Tables 10.3 and 10.4 of [3, pp. 58, 591 which 
were obtained using the Tychonoff regularization procedure 
briefly recalled in Section 3.8; in fact fewer iterations are 
needed here, implying a smaller CPU time (actually the 
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TABLE II 

At=h/2fi 

h/2 l/8 l/l6 l/32 l/U l/l28 

Number of conjugate gradient iterations 1 10 12 12 12 

CPU time (s) CRAY X-MP 0.1 0.6 2.8 14.8 83.9 

Ileo - 4 110.0 Ile”llO,o 9.6 x lO-2 2.6 x lo-* 2.2 x lo-2 6.4 x lo-’ 1.5 x 10-r 

Ie”-ePlh~ 
leoI bD 

3.5 x lo-’ 1.8 x lo-’ 9 x lo-* 4.4x 1o-2 2.2 x lo-* 

lie’ - 4 Ilo, ll~‘llo,n 1 x10-’ 2.6 x lO-2 1.5 x 10-l 7 x lo-3 3.2 x 10-j 

IhO - 4 110,” 
lIUO/lO,O 2.4 x lo-* 3 x 10-s 6 x IO-* 8.3 x lO-8 6.6 x lo-8 

lb’-d-I,, 
ll~llI-I.R 6.9 x lO-7 4.6 x lo-’ 9.4 x 1om6 2 x lo-5 8.5 x 10m5 

llg - ET, IIOJ Ilgll0.L 1.2 x 10-l 4.3 10-Z x 2 1o-2 x 7.6 x lo-’ 3.4 x 10-3 

II& llo,z 1.211 7.386 1.453 7.405 7.381 

Note. We take h/2 as the discretization parameter to make easier comparisons with the results of Table 31 and of [2, Section lo]). 

CPU time seems to be a sublinear function of hP3 which is 
within to a multiplicative constant of the number of points 
of the space/time discretization grid). Table II 
that the approximation errors (roughly) satisfy 

also shows 

Ileo - 4 II L>(n) = Wh*), 

Ileo - ez II H;(R) = O(h), 

lle’ - 4 II Lqn) = O(h), 

II g - g,. II Lq,q = O(h). 

(4.2), 

(W2 

(4.2), 

Estimates (4.2), and (4.2), are of optimal order with respect 
to h in the sense that they have the order that we can expect 
when one approximates the solution of a boundary value 
problem, for a second-order elliptic operator, by piecewise 
linear finite element approximations; this result is not 
surprising since (from Section 3.4.2, relation (3.12)) the 
operator A associated to Q = (0, 1) x (0, 1) behaves, for T 
sufficiently large, like 

2T (4.3) 

(we have here x0 = (0.5, 0.5) and C = 0.5). 
In order to visualize the influence of h we have plotted for 

h = b, $, &, 8, f, and At = h/2 $ the exact solutions e”, 
e’, g and the corresponding computed solutions ez, et, g,,. 
To be more precise, we have shown the graphs of the func- 
tions x1 -be0 (x,, 0.5), xl -be1 (x1, OS), t+ Ilg(t)(l.2CZ, 

(solid lines) and of the corresponding computed functions 
(dotted lines). These results have been reported on Figs. 4.1 
to 4.5, and the captions there are self-explanatory. 

The above numerical experiments have been done with 
T= 1514 a; in order to study the influence of T we have 
kept u” and u1 as in the above numerical experiments and 
taken T= 28.2843. For h = & and At = h/2 $ we need just 
10 iterations of algorithm (3.87)-(3.110) to achieve 
convergence, the corresponding CRAY X-MP CPU time 
being then 800 s (!) (the number of grid points for the space/ 
time discretization is now - 86 x 106). We have 1) g,. )I L~cZ) = 
2.32, 11 u” - u; 11 L2cn) = 5.8 x 10p6, and 11~’ - uf II p,,R = 1.6 x 
10p5. The most interesting results are the ones reported on 
Figs. 4.6a and b. There, we have compared Tez and Tef (for 
T= 28.2843) to the corresponding theoretical limits x0 and 
x1 which, according to Section 3.4.2, relations (3.13)-(3.15) 
are given by 

-Ax”=u1/2 in 0, x0 = 0 on I-, (4.4) 

x1 = - u0/2. (4.5) 

The solid curves represent the variations of x, + x0(x,, 0.5) 
and of x1 + x1(x,, 0.5), while the dottedcurves represent the 
variations of x1 + Teg(x,, 0.5) and x, -+ Tef(x,, 0.5). In 
our opinion the above figures provide an excellent numerical 
verzjkation of the convergence result (3.13) of Section 3.4.2 
(we observe at x1 = 0 and x1 = 1 a (numerical) Gibbs 
phenomenon associated to the L* convergence of Tet to x’). 
Conversely, these results provide a uakdation of the 
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(a) 

FIG. 4.1. (/I=:, Ar=h/2,/$: (a) V ariation of e’(x, , OS)(-) and ez(x, , O.S)( . . ); (b) Variation 

(cl Varktion of II g II Lqr,(-) and II g, II ~2d . . . h 
of e’(x,, OS)(-) and e:(x,, O.S)( ‘..); 
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(4 

(c) 

FIG. 4.2. (h=+, dr=h/2&): (a) V ariation of e’(x, , OS)(-) and ez(x, ,0.5)( . ‘. ); (b) Variation of e’(x, ,0.5)(-) and eL(x, ,0.5)( ‘. ); 

(cl Vadion of II g II LmC--) and II g, II m-)( ‘1. 
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(a) 

FIG. 43. (h = A, At = h/2 $): (a) V ariation of e”(x,, OS)(-) and e%(x, ,0.5)( ); (b) Variation of e’(x, , OS)(-) and ej(x, , OS)( ); 
(cl %iation of II gll L+rJ-) and II g, II Q(~.)( ‘1. 
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(4 

FIG. 4.4. (h = &, At=h/2fi): (a) V ana ti on of e’(x, ,0.5)(-) and ep(x, , OS)( . ); (b) Variation of e’(x, ,0.5)(-) and et(x, , O.S)( ); 

(cl Va+tion of IkIlL+-)(-) and II& lILqrj( ). 
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0.00~““‘~“““““‘~‘~““““‘“““‘“‘~““””’ 
0.0 0. I 0.2 0.3 0.1 0.5 0.6 0.7 0.8 0.9 L.0 

(b) 

FIG. 45. (h = 8, Ar=h/2,/?): (a) V ariation of e’(x, ,0.5)(-) and e:(x, ,0.5)( . . ); (b) Variation of e’(x, ,0.5)(-) and et(x, ,0.5)( ); 

Cc) Varhtion of II gll LV+-) and II g, II Lzcrj( . . ). 



numerical methodology discussed here; they show that 5. SOME COMMENTS ON THE WAVELET 

this methodology is particularly robust, accurate, non- APPROXIMATION OF THE NAVIER-STOKES 
dissipative and perfectly able to handle very long time EQUATIONS 
intervals [0, r]. Actually, it will be shown in [29] that the 
above-mentioned qualities of our numerical methods persist 5.1. synopsis 

for initial data u” and u1 much rougher than those 
considered in Sections 3.7 of the present article. 

The main goal of this section is to briefly discuss some 
issues associated to the wavelet approximation of the incom- 
pressible Navier-Stokes equations 
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au 
x-VV%l+(U.V)U+vp=f in Q, (5.1) 

(a) 

v.u=o in Q, (5.2) 

completed with appropriate initial and boundary conditions; 
notation is like in Section 2, with the nonlinear term in (5.1) 
defined by 

(".v)u={j$l uj$}"_ . 
, r-l 

Wavelets have become a generic name denoting various 
mathematical objects: the wavelets that we have in mind are 
the compactly supported ones introduced by I. Daubechies 
in [30], motivated by signal processing applications. 
Indeed, it has been shown in [31, 321 that the Daubechies 
wavelets have interesting possibilities concerning the 
numerical solution of partial difSerentia1 equations, 
including the viscous Burgers equation 

where the viscosity v is small; the main difficulty with 
Daubechies wavelets is the treatment of boundary condi- 
tions, particularly for domains with a complicated shape. 

5.2. Generalities on Compactly Supported Wavelets 

As mentioned just above, the wavelets that we consider 
are the compactly supported ones introduced by I. 
Daubechies in [30]. These wavelet functions are defined 
from a so-called scaling function cp solution of the scaling 
relation: 

s c a l i n g  a (5.4) 

then relation (5.3) clearly implies that 

FIG. 4.6. (h = A, dt= h/2 fi, T=28.2843): (a) Variation of TN- 1 
x0(x,, OS)(-) and Tez(x, , O.S)( ‘. ); (b) Variation of x1(x,, OS)(-) and --c ak = 2. (5.5) 
7q(x,, 0.5)( ). k=O 
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If we require now the translates of cp by the integers to be it follows then from (5.10) that we have 
orthogonal, i.e., to satisfy 

I cp(x-I)cp(x-m)dx=O, Vl,mEZ,I#m, (5.6) R 

I. (5.11) 

the scaling relation (5.3) implies that 
Reiterating (5.11 band observing that (5.4) implies that 

g(O) = l-we obtain the following infinite product relation 

ZN-1 

c akakpZm=O, VmEZ,m#O (5.7) c)(s) = +e P(2-4). (5.12) 
k=O j=l 

(in(5.7),wetakeakP2,=Oifk-2m$(0,1,...,2N-1)). 
If relations (5.5) and (5.7) are satisfied the functions qjr 

defined by 

cpil(x) = 2+p(2jx - I) (53) 

(i.e., obtained from rp by translation and dilation) form a 
basis of L2( [w). 

The fact that the set {ak}::; ’ is finite implies that cp has 
a compact support. Without additional relations on the coef- 
ficients ak) the scaling function cp will not be smooth, in 
general. Take, for example, N= 1 and a, = a, = 1, then the 
function cp defined by 

cp(x) = 1 if 06x< 1, q(x) = 0 elsewhere 

The scaling function cp is given then by 

q(x) = jR (I(S) e2jnsx ds. (5.13) 

The fast Fourier transform can be used to obtain cp from 
4 in (5.13); actually, since it can be shown that the support 
of cp is the interval [0, 2N- 11, it suffices to know CJJ at 
x = 0, 1, . ..) 2N - 1, to obtain-via the scaling relation 
(5.3)-its values at any dyadic number of the interval 
[O, 2N - 1 ] (i.e., at any x of the above interval which has a 

finite binary expansion; we recall that the set of the dyadic 
real numbers is dense in [w). 

The construction of the scaling function given here is the 
one discussed in [31]; see, e.g., [33] for other methods to 
construct cp. 

The basic wavelet function $ is defined from the 
clearly satisfies (5.3)-(5.7); however, it is definitely a COefkientS ak and from cp by 
discontinuous function. 

To force the smoothness of cp, we may require, for 
example, that the monomials 1, x, . . . . xN-’ have to be linear q(x)= i (-l)kal-kq(2x-k); (5.14) 

combinations of the translates cp(x - 1); this will imply 
k=2-2N 

ZN-1 
next, we define tij, by 

kzo (-l)kkmak=O, for m=O, l,..., N-l. (5.9) 
Il/Jx) = 2qq2’x - I). (5.15) 

Suppose that we have constructed a set { ak} i’?“=, 1 satisfying In order to use wavelet based Galerkin solution methods, 
(5.5), (5.7) (5.9); to construct the scaling function cp from we introduce for nfixed the following subspaces V,, and W,, 
this set we may proceed as follows: of L2( LB): 

Taking the Fourier transform of both sides of (5.3) we 
obtain I’, = closure of the linear space spanned by 

d(s) = jR q(x) epzizsx dx 
{(P”lllGL) (5.16) 

W, = closure of the linear space spanned by 

~ imk {+nllkZ. 

. (5.10) 
Then the following properties hold: 

Define the function P by 

(5.17) 

(5.18) 

2N-1 

p(s)= 4 C ake-2i”“k; 

k=O 

(5.19) 
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hJ?dlcZ is an orthogonal basis for V,, Vn, (5.20) 

W,, is the orthogonal complement of V,, in V, + i , (5.21) 

N?dLz is an orthogonal basis for W,,, Vn, (5.22) 

(Pi, and rl/“, have a compact support, Vn, I, (5.23) 

s qnI(x) dx = 2 -“I’, 
R 

1 
iw I)~,(x) dx = 0, Vn, 1. 

(5.24) 

A further consequence of (5.18)-( 5.21) is 

L’(R)= V,@ 1 @ Wj, Vn, (5.25) 
i 3 n 

which clearly implies L2( IR) = I’,, @ xi, 0 @ Wj. 
Incidently, relation (5.25) is of fundamental importance 

to implement wavelet based multilevel solution methods. 
The approximation properties of the Daubechies func- 

tions are discussed in, e.g., [30, 311; observing that for N 
sufficiently large (see [30, 311 for a more precise statement) 
we shall have cp and Ic/ belonging to H”( [w) (with m < N), it 
has been shown that if the function f is sufficiently smooth 
then 

where P, : L2( R) -+ V, is the orthogonal projector from 
L2(R) to v,. 

We have shown on Fig. 5.1 the graphs of the scaling func- 
tion cp and wavelet function +, respectively, corresponding 
to N= 3. 

FIG. 5.1. Variation of q(-) and $( ...) if N= 3. 

581/103/2-3 

5.3. Application to the Solution of the 
Incompressible Navier-Stokes Equations 

5.3.1. Generalities 

The Navier-Stokes equations that we consider are those 
given by (5.1), (5.2), completed by initial and boundary 
conditions. Concerning the wauelet solution of the above 
Navier-Stokes equations, we see immediately three sources 
of potential difficulties, namely: 

(i) The treatment of the incompressibility condition 
v.u=o. 

(ii) The treatment of the boundary conditions. 

(iii) The simulation of flow at large Reynolds numbers. 

In this article we shall focus on (i); however, the two other 
issues deserve some comments: 

Concerning boundary conditions, the periodic case is quite 
easy to implement; on the other hand, other boundary 
conditions such as Dirichlet and Neumann yield serious 
difficulties, the main reasons being that in a wavelet 
expansion the coefficients are not pointwise values of the 
function or of its derivatives, as is the case with finite 
elements or finite differences. Among the possible cures let 
us mention boundary fitted wavelets like the ones developed 
by S. Jaffard and Y. Meyer in [34], or fictitious domain 
methods, in the spirit of [35, 36-J; we are currently 
investigating the second approach. Another possibility is to 
couple wavelet approximations (used away from the 
boundary) with finite elements (used in the neighborhood of 
the boundary), but the matching problems (at least for 
nonoverlapping couplings) are essentially as difficult to 
implement as are boundary conditions. 

Concerning now the simulation of flow at large Reynold 
numbers we can predict, on the basis of preliminary numeri- 
cal experiments done with the Daubechies wavelets, that for 
an equivalent amount of computational work, wavelet 
based methods are more stable and accurate than finite 
element, finite difference, and spectral methods, at least for 
problems with very simple geometry and boundary condi- 
tions. The above experiments involved the solution of the 
Burgers equation u,+uu,=vu~, (cf. [31,32]) and of the 
Navier-Stokes equations with periodic boundary conditions 
(cf. [37]). A key property of wavelet based solution 
methods is that they seem to require much less (if any at all) 
artificial viscosity for highly advective flow; a possible 
explanation of this behavior is that it is a consequence of the 
orthogonality of the basis functions and of their localization 
properties in the spatial and spectral domains. 

The treatment of the incompressibility seems to be even- 
tually fairly simple and will be addressed in the next section. 
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5.3.2. Wavelet Treatment of the Incompressibility Condition 

Operator splitting techniques applied to the solution of 
the Navier-Stokes equations (5.1), (5.2) lead to the 
following Stokes equations 

au-vV2u+Vp=f in Q, (5.26) 

v.u=o in 52. (5.27) 

We suppose that the boundary conditions are defined by 

u=g on r 

i.e., they are of the Dirichlet type. 
A variational formulation of problem (5.26), (5.27) is 

given by 

UE v,; Vv E V0 we have 

s (au.v+vVu.Vv)dx (5.29) 
R 

- j pV.vdx=j f.vdx, 
B R 

s qV.udx=O, vqEP(Q);pEP(Q). (5.30) 
R 

In (5.29), (5.30), we havev.w=Cf=‘=, viwi, Vv= {ui}~=,, 
W= {Wi}f=l; vv . VW = c;=, cf= 1 (avi/axj)(aw,/axj); v. = 
(Hi(Q))d and V, = (v 1 v E (I-I’(Q))‘, v = g on r}. 

It follows from (5.29), (5.30) that the two fundamental 
spaces in the variational formulation of (5.26), (5.27) are 
L’(Q) (for the pressure) and (H’(Q))d (for the velocity). 
We discuss now the wavelet approximation of the 
variational problem (5.29), (5.30): 

From now on we shall denote by qN the scaling function 
associated to the positive integer N (the precise definition of 
the scaling function has been given in Section 5.2); the 
parameter N plays clearly the role of a polynomial degree. 
We define next cp; and <p:(R) by 

q;(x) = 2’/24?(2’x- I), VXE R, (5.31) 

@f(R) = closure of the linear space spanned by 

mLL~ (5.32) 

respectively. 
In order to apply wavelets to the solution of multi- 

dimensional problems an obvious approach is to use tensor 
products of one variable function spaces to define the multi- 
dimensional ones. We define therefore the spaces V~(IJY’) 
and Vr(Rd) by 

respectively. 

(5.33) 
i= 1 

V,“( Rd) = (Yq lR”))4 (5.34) 

By restricting to Sz the elements of the two above spaces, 
we obtain V:(Q) and V:(Q); if Q is bounded, these two 
spaces are finite dimensional. On the basis of the analysis 
done in Section 2.4, concerning the finite difference and 
finite element approximations of the Stokes/Dirichlet 
problem (5.26)(5.28) we shall approximate the velocity 
spaces V, and V, by appropriate subspaces of V:(Q) 
(taking into account, in some way or another, the 
boundary conditions v = 0 and v = g, respectively), and 
then the pressure space by YrP ,(Q); in order to have 
V/,N(Q)cH’(Q), we have to take N>3 (cf., e.g., [30, 311 
for this result). We then substitute to V,,, V,, and L2(Q), 
their wavelet analogues in (5.29), (5.30) to obtain a wavelet/ 
Galerkin approximation of the Stokes problem 
(5.26)-( 5.28). 

The wavelet implementation of Dirichlet boundary con- 
ditions, for multidimensional problems (byfictitious domain 
methods, in particular), is presently under investigation. 

APPENDIX: CONJUGATE GRADIENT 
SOLUTION OF THE STOKES PROBLEM 

As announced in Section 2.5 we shall discuss 
appendix the preconditioned gradient solution 
generalized Stokes problem: 

au-vV2u+Vp=f in 52, 

v.u=o in Q, 

u = go on To, 

au 
v~-np=tih onr,, 

in this 
of the 

(A.11 

(A.21 

(A.3) 

where Q c Rd (da 2) and where I-,,, rl are two subsets of 
the boundary r of 52, such that 

ronrl=O, closure(r, u r,) = r; (A.4) 

if rI = 0 (i.e., r= r,) we have to assume that 

s 
g,.ndr=O. (4.5) 

F 

Following Section 2.3, we should easily prove that the 
pressure solution in (A. 1 )-( A.3) is the solution of 

Ap= -V.u,, (A-6) 
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where u0 is the solution of the elliptic system 

au,-vdu,=f in Q, 

uo=go on ro, 

and where operator A is defined by 

Aq=V.u,, vq E L*(Q), 
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Observe now that Eq. (A.6) is equivalent to the linear 
variational problem 

(A.7) 
PEP 

(A.81 
jQ (Ap)qdx= -jDV.uoqdx, 

(A.16) 
VqEP; 

with u, the solution of the following elliptic system: 

au,-vAu,= -Vq in 52, (A.lO) 

u, = 0 on ro, 

au, 
(A.ll) 

Van=qu 
on r,. 

from the properties of operator A mentioned above, it 
appears that problem (A.16) is a particular case of those 

(A 9) problems (P), whose solution has been discussed in 
Section 3.5.1. Problem (A. 16) can be solved therefore by the 

Using integration by parts we can easily prove that 

ja (4) 4’ dx = jQ ( cru,~u,~+vVu,Vu,)dx, 

vq, q’ E L2(!2). (A.12) 

It follows from (A.12) that operator A is symmetric 
and-at least-positive semi-definite; indeed we have more 
since we also have 

s (Aq)q dx B Y Ilq1&,, vqep, (A.13) 
R 

where, in (A. 13), y is a positive constant and space P is 
defined by 

P = L*(Q), if r, #QI (A.14) 

and 

qlqEL2W, joqdx=O}, 
if r. = r. (A.15) 

From these properties, operator A is an isomorphism 
from P onto P, implying in turn that Eq. (A.6) has a unique 
solution in P, if the right-hand side -V . u. belongs to P. If 
f-i # a, it is clearly the case; if r. = r, we have 

s R 

which implies that -V . u. belongs to P and therefore that 
(A.6) has a unique solution. 

conjugate gradient algorithm (3.18)-(3.25). 
The corresponding algorithm will be fully defined once 

one has specified the scalar product to be used over space P. 
As discussed in [20, 381, the usual scalar product of L2(Q), 
namely, 

14, q’) -+ jQ qq’ dx, 

leads to an algorithm with poor convergence properties if 
v/a G 1. In order to have an algorithm performing well for 
all values of v/cc the following scalar product is advocated 
(and justified) in [20, 381, 

{q>q’j --t jQ (S +d 4’ dx> 

where operator S: P ---f P is defined as 

sq = vq + cccp,, V’qEP, (A.17) 

with (pq the solution of 

-&q = q aq inQ, A=O 
an on r,, 

(A.1811 
(Pq=O on r,, if r,za 

-Arp,=q acp in@ ---J=O 
an on To, 

(A.I8)2 

I 
(pydx=O, if r,= r. R 

From a practical point of view it is more important to 
know S-’ than S to implement a conjugate gradient 
algorithm preconditioned by S. 

The space P being equipped with the scalar product 
associated to S-l, and, assuming that r1 # 0, algorithm 
(3.18)-(3.25) applied to the solution of problem (A.16) 
leads to the following algorithm (cf. also [38, Section 
4.3.3)). 
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DESCRIPTION OF THE ALGORITHM. Solve, next, 

p” E P is given; 

solve 

cl”‘-v Au”=f-Vp” in Q, 

u” = go on ro, 

i3U0 
van=gl +np” on rl, 

and set 

yo = v . uo. 

Solve now 

-A,p”=ro in Q, 

acpo o -= 
an 

on To, 

‘PO=0 on rl, 

and set 

go = VT0 + ucp": 

UP czz go. 

(A.19) 
-&j”=f” in Q, 

acpm 
x=0 on ro, 

@“=O on 6, 

(A.20) and compute 

g * + ’ = g” - pm(vYrn + u@m). (A.32) 

IfjQr m+lgm+ldx/~SzrogodxdE, takep=pm+‘,u=um+L; 
if not compute 

(A.21) 
Ym= r J m+‘gm+’ dx rmgm dx, (A.33) 

n 

and then 

W 
*+I _ - g*+’ + y* Wm. (A.34) 

(A.22) 
Do m = m + 1 and go back to (A.25). 

Algorithm (A.19)-(A.34) has proved to be quite efficient 
for solving Navier-Stokes equations on a quite large range 
of Reynolds number. To conclude this Appendix we have 

(A.23) 
the following remarks: 

(A’24) 
Remark A.l. In the case where r,=r, we should 

replace (A.20), (A.22), (A.25), (A.31) by 

and set 

Compute 

(A.31) 

Then for m 2 0, assuming that p”, urn, rm, g”, wm are known, 
compute pm + I, urn + ‘, r” + ‘, g” + I, wm + ’ as follows: 
Solve 

Uii”- v Au”= -VW” in s2, 

fi”=O on r,, (A.25) 

au’-v Au’=f-Vp” in Q, 

uO=g, on r, 
-Aq”=ro in 52, 

a0 -= 
an 

0 on r, ‘p” dx=O, 

aiim 
v;;n=nh’m on 6, uU”- vAU”= -VW” in Q, 

fi”=O on r, 
-A@“=F* in Sz, 

p=v.a* 

Jn rmgm dx 
P* = ja j7BWm dx’ 

and then 

P m+l=pm-pmwm, 

U m+1=p 
- Pmfirn, 

ym+l=ym-pmfm. 

(A.26) 

respectively. 

a+* o -= 
an on r, s cp”dx=O, 

52 

(A.20)’ 

(A.22)’ 

(A.25)’ 

(A.31)’ 

(A.27) Remark A-2. Taking E = lo-l4 in the above stopping 
criterion has provided very satisfactory results when 
running on the CRAY X-MP. 

Remark A.3. In practice one solves a finite dimensional 
(A.28) analogue of problem (A.16), obtained by a finite difference, 

(A’29) 
or finite element, or spectral approximation of the 
Navier-Stokes equations (see, e.g., [38, Sections 4 and S] 

(A.30) for this aspect of the solution process). 
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