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In this article we give a comparative discussion of the finite element
approximation of two partial differential equation problems. These two
problems which are apparantly quite unrelated are the Stokes problem
for incompressible viscous flow and an exact boundary controllability
problem for the wave equation. We show that straightforward discrete
approximations to these problems yield approximate problems which
are ill-posed. The analysis of the ill-posedness of the above problems
shows an identical cause, namely the strong damping of the high
frequency modes, beyond a critical wave number. From this analogy, a
well-known cure for the discrete Stokes problem, i.e., using more
accurate approximations for velocity than for pressure, provides a
simple way to eliminate the ill-posedness of the discrete exact
boundary controllability problem. Numerical examples concerning the
control problem testify about the soundness of the new approach. To
conclude this paper one takes advantage of the previous analysis to
give a brief discussion of the wavelet approximation of the Stokes
problem, for Dirichlet boundary conditions.  © 1992 Academic Press, Inc.

1. HISTORICAL PERSPECTIVE:
MOTIVATION AND SYNOPSIS

Motivated by the wavelet approximation of the Stokes
problem, with Dirichlet boundary conditions on the velocity,
we recently undertook (in [1]) an analysis of the ill-posed-
ness of the discrete Stokes problems when similar finite
element approximations and identical meshes are used for
both velocity and pressure. From that analysis, it appears
that the ill-posedness of the above discrete Stokes problem
is due to the strong damping of the high frequency pressure
modes, beyond a critical wave number. Indeed, the above
analysis strongly supports the well-known cure of the
discrete Stokes problem consisting of using qualitatively
similar finite element approximations for pressure and
velocity, the pressure one being associated to a mesh twice
coarser than the velocity mesh (other cures are possible as
shown in, e.g., [2]).

Considering now the exact boundary controllability
problem whose numerical solution is addressed in [3, 4], it
follows from J. L. Lions [5-7] that it can be reduced to a
Sfunctional equation whose solution gives the initial data of
an adjoint wave equation, whose solution will provide in
turn the exact control we are looking for (this approach is
fully described in Section 3). The above functional equation
is associated to an operator which has essentially the same
properties as the operator that one obtains if one eliminates
the velocity in the Stokes equations (see Section2 for
details); indeed in [4] we have used this similarity since we
have shown there that both problems can be solved by a
general conjugate gradient algorithm, well suited to linear
functional equations in Hilbert spaces for strongly elliptic
and self-adjoint operators. Actually, the similarity between
both problems goes beyond the above structural analogy,
since a straightforward (finite element in space/finite
difference in time) discretization of the boundary control
problem yields an ill-conditioned discrete operator A3’
whose damping properties are exactly the same than those of
the discrete Stokes operator (if one uses similar finite
element approximations and identical meshes for pressure
and velocity). This analogy clearly suggests that the spirit of
the cure which works for the Stokes problem (i.e., using a
pressure mesh twice coarser than the velocity one) may also
provide a way to eliminate the ill-posedness of the discrete
boundary control problem. This prediction seems to be true
as we shall see in Section 4.

The content of this article is the following: In Section 2 we
discuss the finite element approximation of the Stokes
probiem for Dirichlet boundary conditions on the velocity.
In Section 3, we discuss the solution of an exact boundary
controllability problem for the wave equation, by the J. L.
Lions Hilbert unigueness method (HUM) (see [3-7]); we
show in particular that classical finite element in space/finite
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difference in time implementations of HUM yield discrete
problems which are ill-posed. We also show that the cure
used for the discrete Stokes problem provides a discrete
boundary control problem, which on the basis of the
numerical experiments of Section 4, is well-posed, uniformly
in 4 and 4¢, and gives optimal orders of convergence (the
conjugate gradient solution of the discrete boundary control
problem is fully described in Section 3). In Section 5, we
briefly discuss the application of the concepts of Section 2 to
the wavelet solution of the Stokes problem for Dirichlet
boundary conditions on the velocity. Finally, in an
appendix we discuss the solution of the Stokes problem of
Section 2 as an application of a fairly general conjugate
gradient algorithm described in Section 3.5.

2. THE STOKES PROBLEM AND ITS FINITE
ELEMENT APPROXIMATIONS

2.1. Formulation of the Stokes Problem

Let Q be a bounded domain of R? (d= 2, 3 in practice) and
let I" denote its boundary; we suppose that I" (and therefore
£2) is invariant with time. We suppose next that an incom-
pressible (very) viscous flow is taking place in 2 modelled by
the following unsteady Stokes equations

%—vV2u+Vp=f in , (2.1)
Vou=0 in Q, (2.2)

u=g onlrl, (2.3)

u(x, 0) =uy(x), xeQ. (2.4)

In (2.1)-(2.4):

(@) w={u;}?_, is the velocity, p is the pressure,

(b) x={x;}i_,,V={0/ox;}{_ .V’ =4=37 , 0*/ox],
Vou=Y9  ou,/ox,

(c) v(>0) s a viscosity coefficient, f is a density of
external forces,

(d)

V -u =0 is the incompressibility condition; it implies

Lg-ndl“=0, (2.5)

where n is the outward unit normal vector at I', and also

V.u,=0 in Q,

onl,att=0

(2.6)

Uy-n=g-n (2.7)

(in (2.5)—(2.7), y -z is the canonical scalar product of R i.e.,
y-z=3{  yiz, Vy={y.}{_ 1, 2= {z,}{_ e RY).
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2.2. Time discretization of the Stokes
problem (2.1)-(2.4)

With A¢(>0) a time discretization step, we approximate
the time dependent Stokes problem (2.1)-(2.4) by the
following backward Euler scheme (we consider that par-
ticular scheme essentially for its simplicity, but more
accurate ones are available leading to the same type of
elliptic problems at each time step):

u At_u _szun+1+Vpn+l
=fr+! in Q, (2.8)
V-u'tl=0 in Q, (2.9)
utl=g*! onrl, (2.10)

ul=uy,; (2.11)
in (28)-(2.10), w'(x) ~ u(x, ¢ 41), p(x) ~ p(x, q 4t),
f(x) =f(x, q 4¢), g%(x) =g(x, q 4t). Clearly, the problems
to solve at each time step are all particular cases of

au—vVau+Vp=f inQ, (2.12)
Vau=0 inQ, (2.13)
u=g onl, withj g-ndl=0, (2.14)

r

with o > 0; the solution of (2.12)-(2.14) will be discussed in
the Sections 2.3 and 2.4.

Remark 2.1. Using operator splitting techniques for the
time discretization of the full (nonlinear) incompressible
Navier—Stokes equations leads also to the solution at each
time step of problems such as (2.12)-(2.14), with « still the
reciprocal of a time step (see [4] and the references therein
for more details).

2.3. A functional equation satisfied by
the pressure solution of
problem (2.12)—(2.14)

If the data f and g are sufficiently smooth then problem
(2.12)—(2.14) has a unique solution in (H'(Q))4 x (L}(Q)/R)
(typical conditions would be fe (H ~'(2))?, ge (HX(I'))%);
for the definition and properties of the above (Sobolev)
functional spaces, see {8,9]. From now on, we shall
consider the unique pressure p belonging to H, where

H={q|qeL2(Q), fquxzo}

(with dx = dx, - - - dx,p). (2.15)
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The best way to understand the mechanism interrelating
the pressure and velocity approximations is—from our
point of view—to eliminate u in (2.12)-(2.14); to do this, we
first define u, as the unique solution of the Dirichlet system

in €, (2.16)

(2.17)

auy—v V=1

u=g on I
the above function u, is not related to the one in (2.4).

We observe that the pressure p satisfies the functional
equation

Ap=—V .u,, (2.18)
where, in (2.18), the (pseudo-differential) operator A is
defined by

Ag= =V -((al —wW?)" ' Vg), Vge L3(R2), (2.19)
in (2.19) the boundary conditions associated to af — vV are

the homogeneous Dirichlet boundary conditions, i.e.,

Ag=V -u,, Yge L*(Q), (2.20)
where u,, is the solution of the Dirichlet system
au,—vVu,=-Vqg inQ, (2.21)
u,=0 onl, (2.22)
which has a unique solution in (H 5(2))“. We have
f Aquzj V-uqu=j u,-ndl"=0,
Q Q r
which implies in turn that
Age H, Vqe L*(Q); (2.23)
we also have, Vq, ¢’ € L*(Q),
J (Ag) ¢ dxzfo. u,-u, dx+ vj Vu,-Vu,dx, (2.24)
2 2 Q

which implies, combined to (2.23) that A4 is a self-adjoint,
strongly elliptic isomorphism from H onto H (see, e.g., [9]
for details); thus problem (2.18) has a unique solution in H
since

JQV-uodx=Lg-nd1"=0

implies that the right-hand side —V -u, of (2.18) belongs
to H.

From the properties of 4, problem (2.18) (and therefore
the Stokes problem (2.12)-(2.14)) can be solved by

conjugate gradient algorithm as shown in, e.g., [1,4, 10]
(see also the references therein). In the following Section 2.4,
we shall discuss the space discretization of operator A.

2.4. Space approximation of Operator A

For simplicity, we consider the particular case where
0Q=(0,1)x (0, 1); we define the space discretization step A
as h=1/(I+ 1), where [ is a positive integer, and introduce
the grid points M ;= {ij, jh}, 0<i, j<I+1; the points M
can be used to define either finite difference or finite element
approximations of problems (2.12)-(2.14) and (2.18).
For further simplicity, we shall consider finite difference
approximations but the following discussion could have
been done in a finite element framework, using piecewise
linear approximations associated to the triangulation of
Fig. 2.1 and the trapezoidal rule to evaluate integrals like
a |, vw dx in the corresponding variational formulation of
elliptic systems like (2.16), (2.17) and (2.21), (2.22).

The pressure p will be approximated by p,=
{Pito<i;<i+1 and those velocity fields v vanishing on I,
by v, = {v;} 1< ;< With v;€ R% Let us define the discrete
pressure and velocity spaces P, and V,, by

Ph={‘]h|‘1h={‘1if}osf,j<1+l}a (2.25)

and

(2.26)

Vor={vsl¥s={Vi} 1< i V,E R?}.

To study the kernel and the damping properties of the
discrete analogue of operator 4 it is convenient to introduce
the following vector bases of P, and V,,,,:

B = { Pnn| Pomn = {COSMiTh X COS T} o 1< 101

osmn<I+1} (2.27)

FIG. 2.1. A regular triangulation associated to the grid points M ;.
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and
B, = {{sin minhx sin njnh, 0}, <. ;<
t<m,n<I}u {{0,sinkinhxsinith}, o, <

1<k, 1<), (2.28)

respectively.

The convenience of the above bases 1s due to the fact that
their elements are the eigenvectors of matrices which
approximate (via finite difference discretizations) the
elliptic operator —V? for the homogeneous Neumann and
Dirichlet boundary conditions, respectively. The finite
difference method to be described below is not used in
practice (until recently at least) since it is known to be
unstable. However, since the corresponding discretization is
very close to the one obtained by finite element methods
using regular triangulations such the one in Fig. 2.1, and on
these triangulations piecewise linear approximations for
both pressure and velocity, we shall consider it in detail.
Indeed, the crucial part is the way (af—vV?)~'Vp is
approximated:

First, if p, € P, we approximate Vp at M, by

Piv1j—Pi—1j Pij+1— Dij—1
2h ’ 2h ’

1<i,j<I.

(5Ph)¢jj = {
(2.29)
If we denote by w, the element of V,, approximating
(o —vV?)~! Vp, we obtain it via the solution of the linear

system

v
ocw,:,—P (Weo i +W, W, +w,  —dw,)

=(0pn)y,  1<ij<I (2.30)
To study the properties of the mapping
P Wyt P> Ve, (2.31)

we consider the particular case, where p, = ¢, € %,,; the
corresponding value of (6p,),;, denoted by (6¢,,,); is then
given by

i

sin mmnh

sin minh x cos njnh,

(5(pmn)ij = {

sin nmh

cos minh x sin njnh}. (2.32)

Relation (2.32) is the discrete analogue of

V@, (M ;)= — {mn sin minh x cos njnh,

nT cOs minth x sin njnh},
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where the function @,,, is defined by &,,.(x,x,)=
COS MTX ( COS ATLX5.

If m=n=1+ 1, we clearly have (3¢,,,); =0, V1 <i,j<
indeed, relation (2.32) tells us more since it follows from
Fig. 2.2 (where we have visualized, with an appropriate
scaling, the function mn — mzn and its discrete analogue,
namely the function mn — sin mnh/h), that for m,n>
(I+1)/2, the vectors o,,, are strongly damped by the finite
difference approximation of V defined by (2.29). If we
consider now the matrix in the left-hand side of (2.30), it is
quite easy to check that its eigenvectors are either

{sin minh xsin njnh, 0}, <, ;< I<mn<lI, (233)
or
{0, sin minh x sin njah}, <; <, I<mn<l, (2.34)
the corresponding eigenvalues being
a+4—z<sin2mzh+sin2nﬁh>. (2.35)
h 2 2

Since w,, is obtained by multiplying the right-hand side of
(2.30) by the inverse of the above matrix, we observe from
(2.35) that the damping of the high wave number modes of
p,, associated to the discretization of V is further amplified;
actually the traditional finite difference discretizations of the
divergence operator have a similar behavior (a related dis-
cussion concerning spectral approximations of the Stokes
problem can be found in, e.g., [11, 127).
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To summarize the above analysis we can say that the
pressure modes such that m and/for n>(I+1)/2 are
strongly damped by the discrete analogue of the operator 4
defined by (2.19); this property implies that spurious
pressure and velocity oscillations are produced if one relies
on the above approach to solve the Stokes problem
(2.12)—(2.14), via (2.18). Actually, the finite element
approximations of (2.12)-(2.14), which use the same mesh
and type of finite elements for pressure and velocity, have
the same drawbacks that the finite difference method, which
has been described above (we insist on the fact that this
method is essentially equivalent to a finite element one,
using piecewise linear approximations for pressure and
velocity on triangulations such the one in Fig. 2.1). To
overcome the above unstability we can either

(a) Use different types of approximations for pressure
and velocity

or

{(b) Use the same type of approximation for pressure
and velocity, combined to a regularization procedure.

Approach (a) is well known and is related to the so-called
inf-sup condition; finite element approximations which
satisfy it are discussed in, e.g., [10, 13-187; the main idea
here is to construct pressure spaces which are “poor” in high
frequency modes, compared to the velocity space. Figure 2.2
suggests an obvious remedy which is to use a pressure grid
which is twice coarser than the velocity grid, and then use
approximations of the same type on both grids. This obser-
vation makes sense for finite difference, finite element, and
wavelet approximations of problem (2.12)-(2.14); the well-
known (and converging) finite element method obtained by
using a continuous piecewise linear approximation of the
pressure (resp. of the velocity) on a triangulation 7,
(resp. 7,,, obtained from .7, by joining, as shown in
Fig. 2.3, the midpoints in any T € Z,) definitely follows the
above rule. This method is discussed in [ 1, 4, 13-187 (some
of the above references show numerical results obtained
with it).

Approach (b) which has been recently strongly advocated
by several authors (see, e.g, [19]), leads essentially to

FIGURE 23
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Tychonoff regularization procedures, an obvious one being

- to “regularize” Eq. (2.18) by the following problem (written

in variational form):
p.e HY(Q),

e[ Vp.Vadc+| (4p,)qadx (2.36)
2 Q

:—f V uyq dx, Yge HY(Q),
(]

where, in (2.36), ¢ is a positive parameter.

Very good results have been obtained with approach (b)
(see [19]), we prefer, however, approach (a), for the
following reasons:

(i) It 1s parameter free, unlike the second approach
which requires the adjustment of the regularization
parameter &.

(ii) In general, the mesh size is adjusted, globally or
locally, on the basis of the velocity behavior (boundary and
shear layer thicknesses, for example). Therefore, compared
to approach (a), approach (b) will be four times more costly
(eight times for three-dimensional problems) from the
pressure point of view, without further gains in accuracy.

(iii) Multilevels solvers have been recently developed
for solving problem (2.12)}-(2.14); since methods of type (a)
have also a multilevel structure concerning the approxima-
tion of pressure and velocity, we think that they are better
suited than those of type (b) for multilevel solution methods
such as multigrid.

(iv) Tychonoff regularization procedures are systematic
methods for stabilizing ill-posed problems; in most cases,
the adjustment of the regularization parameter is a delicate
problem in itself; therefore if there exist alternatives which
are parameter frece we definitely think that the latter are
preferable, particularly if they are based on an analysis
of the mechanism producing the unwanted oscillations.
Actually, we have nothing against regularization proce-
dures since we have been using them, in [3, 4], to solve
control problems like the one discussed in the following
Sections 3 and 4; however, as a result of the present analysis,
we shall discuss in Section 3 (in the spirit of the methods of
type (a)), new solution methods for the above control
problems, which are more efficient than those discussed
in[3,4].

2.5. A Remark on the Stokes Problem with
Periodic Boundary Conditions

Suppose that £ is the square (0, 1)* and consider (with «
still positive) the following variant of the Stokes problem
(2.12)-(2.14):
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au—vVu+Vp=f inQ (2.37)
Vaua=0 in Q, (2.38)
u(x17 O)ZH(XI’ 1)’
(2.39)
u{0, x,) =u(1, x,), 0<x,, x,<1,
Vu(xla O) =Vu(x1, 1)a
(2.40)

Vu(0, x,)=Vu(l, x,), O<x,x,<1;
the boundary conditions (2.39), (2.40) are of periodic type.

It is well known (particularly to the spectral methods
specialists) that solving problem (2.37)-(2.40) is fairly easy;
however since this fact seems to be much less known to finite
element people, we discuss here with some detail the
solution of problem (2.37)-(2.40).

We suppose that fe (L*(2))% Taking the divergence of
both sides of (2.37) we obtain from (2.38) that

Vp=V.f inQ. (2.41)

Assuming that p is periodic in the sense of (2.39), (2.40), it
is also a solution of the following variational problem

peP, L)Vp-qux=L)f-qux, VgeP,  (242)

where P is the subspace of H'(2), consisting of those
functions periodic at I' in the sense of (2.39). Applying
the Lax—Milgram theorem (cf., e.g., [18, Appendix 1]) to
problem (2.42), we obtain that problem (2.42) has a unique
solution in P/R (i.e., defined within to an additive constant).
Once p is known, we compute u as the solution of the elliptic
system

au—vVau=f-Vp in Q, (2.43)
completed by the boundary conditions (2.39), (2.40).
Problem (2.43), (2.39), (2.40) has a unique solution, whose
divergence is itself periodic. Denote V-u by ¢ and observe
that ¢ satisfies (from (2.41))

ap—vVie=0 inQ, (2.44)

which, combined to the periodicity conditions satisfied by
@, implies that ¢ =V.u=0 in 2. We have thus solved
problem (2.37)-(2.40). We observe therefore that solving
problem (2.37)-(2.40) amounts to solving a fixed small
number of very simple elliptic problems.

Actually this simplicity of the Stokes problem (2.37)-
(2.40) is preserved by discretization; we can use different
approximation methods to compute pressure and velocity,
we can use different meshes, we can combine spectral
methods for one of the unknown function to finite element
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methods for the other, we can also use similar approxima-
tions on the same grid, etc. This extreme robustness of the
periodic Stokes problem (2.37)-(2.40) with respect to its
numerical solution is not shared by the Stokes/Dirichlet
problem (2.12)-(2.14). However, efficient numerical
methods for solving problem (2.12)-(2.14) have been
developed these last years; they combine, for example,
finite element approximations for pressure and velocity
(piecewise linear pressure, piecewise quadratic velocity,
for example) to very efficient preconditioned conjugate
gradient algorithms like those introduced in [19] and dis-
cussed with further details in, e.g., [10, 15]. Indeed these
algorithms are particular cases of a general methodology for
some class of linear variational problems to be discussed in
Section 3; therefore, for the sake of completeness we shall
come back to them in the Appendix and describe there a
generalization to situations where in addition to Eqgs. (2.12),
(2.13), boundary conditions such as

du
va—n—np=g (2.45)

hold on a part of the boundary I

3. ON THE EXACT BOUNDARY
CONTROLLABILITY OF THE
WAVE EQUATION

3.1. Introduction: Synopsis

Inverse problems for partial differential equations have
always been challenging ones, both from the theoretical and
computational points of view. Indeed, they have the justified
reputation of being very computer time consuming. Among
these inverse problems, control problems for partial dif-
ferential equations occupy a very particular niche, and
indeed, those last years have seen a renewed interest in exact
controllability problems for the wave equations and other
equations modelling vibration and oscillation phenomena,
such as the Maxwell equations, the equations modelling the
vibrations of plates, beams, shells, etc. Interest in such
problems clearly arises from the current advanced projects
on flexible space structures, stealth aerospace vehicles, etc.

In this article, we shall discuss the solution of an exact
boundary controllability problem for the wave equation,
focussing on approximation issues; the iterative solution
of the control problem by conjugate gradient techniques
will be addressed also. Concerning more specifically the
approximation aspect, it will appear than an efficient way to
eliminate unwanted numerical oscillations will be to use two
different grids (as for the Stokes problem (2.12)-(2.14), and
by a similar spectral analysis). In fact, the methods to be dis-
cussed in this section provide an efficient and simpler alter-
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native to the Tychonoff regularization procedure discussed
in [3, 4]. Numerical results will be presented in Section 4.
A (much) shorter version of this article appeared in [21].

3.2. Formulation of the Exact Boundary
Controllability Problem

Let Q be a bounded domain of R? (d > 1), with boundary
I, and for T>0, let (0, T') be a time interval. We shall use
the following notation

195

exact controllability holds is of the order of diam(Q)/c=
diam(Q2), with

diam(Q2) = sup distance(x, y).

X, yeR

Theory (cf, eg, [6,7]) and numerical experiments
(cf. [3]) justify this prediction; actually if € is a disk of
radius R (resp. a square with edges of length L) the lower
bound of those T for which exact controllability holds is 2R
(resp. L).

A systematic way for constructing such control g is
provided by the Hilbert uniqueness method of J. L. Lions
(cf. [5-7]), to be described in Section 3.3.

3.3. Description of the J. L. Lions method:
the HUM method and the operator A

Following J. L. Lions [5-7], we reduce the above exact
controllability problem to the problem of identifying initial
i, s L

X = {xi}?zl, dx:dxl ...dxd,
014
V=<{— ,
{axi}izl
d 62
A=V*= -,
igl ox;
du 0%u
“g g
@2
D=gp— 47 TEEIAUTY,
X =TIx(0,T).

Also, we denote by u(z) the function x —u(x,t). We
consider now a physical system governed by the wave
equation

Hu=0 in Q (3.1)
and satisfying the initial conditions
u(x, ) =1(x), u(x,0)=u'(x) Q. (32)

The exact boundary controllability problem that we
consider is to find g defined over 2 such that taking as
boundary condition

u=g onx, (3.3)
the sotution of (3.1), (3.2), (3.3) will satisfy
u(x, T)=0, u(x, T)=0 on Q. (3.4)

It follows from [5-7, 22, 23], that the above problem has
a solution if one takes T sufficiently large; indeed, the
above result will hold with ge L?(X), even for nonsmooth
initial data «° u' (for example, u®e L(Q), u'e H '(Q)
(=(Hy(Q))).

Remark 3.1. The above result is not surprising, since

Eq. (3.1) describes wave motions with velocity ¢ = 1; from
that, we can expect that the minimal value of T for which the

vala 3
vu.ues—fe%}sseeﬁ@ed—r&djeiﬁkm-f&et-)%eeq&&&eﬂ#e-i, —_—

do this we shall use a method due to J. L. Lions called HUM
(the Hilbert uniqueness method); see [ 6, 7] for more details.
Letusintroduce E= H{(Q)x L*(Q),E'= H ~1(2) x LX(Q),
and then define A operating over E as follows:

Take e= {¢° e'} € E and solve from O to T

OJe=0 inQ, (3.5),
(0)=¢", @, (0)=¢' in Q, (3.5),
=0 onZ; (3.5),
solve then from T to 0

Oy=0 i0Q, (3.6),
WT)=0, ¢(T)=0 mQ  (36),

_o¢
aral onZ. (3.6),

We finally define A by
N e={¥(0), —y(0)}. (3.7)

It is proved in [6, 7] that A is a linear and continuous
operator from E into E'; moreover, if T is sufficiently large
(T> T ~diam(Q)), then it is proved in the above two
references that A is an isomorphism from E onto E’.

Application to the Exact Boundary Controllability of the
Wave Equation (3.1) for the Intial Conditions (3.2)

Suppose that 2’ e L*(Q), u' e H 1(Q).
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Step 1. Take f= {u', —u°}.
Step 2. Solve
Ne=f. (3.8)
Step 3. Solve the associated wave equation (3.5).
Step 4. Take g=(0¢/on)| 5.
Step 5. Solve the associated wave equation (3.6).

We have then

Oy =0
Y(0)=u®,

onz,

Y=g
Yy (T)=0,

in Q,

¥(0)=u', in Q.

Taking u =y, it is quite clear that we have computed a g for
which we have the exact boundary controllability property.

Further Comments

1. In the sequel of this paper we shall be mostly
concerned with the solution of A e=f1.

2. Using the HUM approach we have already men-
tioned that the original control problem is transformed to
an identification of initial conditions problem. In fact, it can
be shown (see [6, 7]) that problem A e =fis in duality with
the minimization problem

min j o drI dt, (3.9)
z

vE Uug
where

Upy={vlve L*(Z), Oy=0inQ, y=vonZ,
y(0)=u’, y(0)=u', y(T)=0,y(T)=0}.

Indeed, the control g built via HUM is the unique solution
of the minimization problem (3.9).

3.4. Further properties of A

3.4.1. Symmetry and Positivity

Integrating by parts in time and using the divergence
theorem, we should easily prove that

(Ae&)=] (0,50 3(x. 0= p(x.0) 3, (x, 0))

@@dfdt

= Ve, éc E,
L@n@n &eec

(3.10)

where, in (3.10), {-, - > denotes the duality pairing between
E’ and E (i.., the generalized scalar product between the
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elements of E’ and those of E). It follows from (3.10) that A
is self-adjoint, and strongly elliptic if T is sufficiently large.

3.4.2. Asymptotic Behavior
Suppose that there exist x, € 2 and C > 0 such that

xoM-n=C, VMel, (3.11)
with n the unit vector of the outward normal at I, at M.
Domains satisfying (3.11) are easy to characterize geometri-
cally, simple cases being disks and squares. Now let us
denote by A, the operator A associated to 7. It has been

shown by J. L. Lions [24] (see also Bensoussan [25]) that

fim Dr_L[—4 o1
ro+e T C| O 1

(3.12)

Result (3.12) is quite important for the validation of the
numerical methods described below, since it easily provides

limoO Ter={y%x"}), (3.13)

T+
where, from (3.12),

— A% = Cu'
= —Cul.

inQ, =0 (3.14)

(3.15)

onl,

3.5. Conjugate Gradient Solution
of the Problem A\ e=f

3.5.1. Generalities on the Conjugate Gradient Solution of
Linear Variational Problems in Hilbert Spaces

Problem A e =f can also be written
eck, </\ e,é>=(f,é>, YécE (3.16)

where, in (3.16), {-,-> denotes the duality pairing men-
tioned above. Suppose now that T is sufficiently large, then
the bilinear form (A -, - is, from Section 3.4.1, continuous,
symmetric, and E-elliptic; i.e., there exists y > 0 such that

</\ é,é>>y lel2,  VéekE, (3.17)
with, in (3.17),
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el = (jg (V&2 +1¢"1?) dx)

Vé={& &'} eE.
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Problem (3.16) is therefore a particular case of the family of
linear variational problems,

a(u, v)= L(v), VveV, (P)

ueV,
where in (P}:
(i) Vis a real Hilbert space for the scalar product (-, -)

and the corresponding norm || .

(ii) a: Vx V — Ris bilinear, continuous, symmetric (i.c.,
a(v, w)=a(w, v), Yv, we V') and V-elliptic (i.e., there exists
a>0such that a{v, v) 2« [v]%, Yve V).

(iii)
With the above hypotheses problem (P) has a unique

solution (cf, e.g., [18, Appendix 1]), which can be com-
puted by the following conjugate gradient algorithm:

L: V — R is linear and continuous.

Step 0. nitialization.

u®e Vis given; (3.18)
solve then
eV, (g% v)=al’ v)—Lv), VveV. (3.19)
If g° =0, or is “small,” take u = u°; if not, set
w' = g° (3.20)
Then for n>0, assuming that u”, g”, w” are known,
compute ¢"*', g"* 1w+ as follows
Step 1. Descent. Compute
ny 2
= Ig”l ’ (321)
a(w", w")
and then
't =u"—p (3.22)

Step 2. Test of the convergence and construction of the new
descent direction. Solve

gn+ 1 e V,
(""", v)=(g" v)=p,a(w"v), VveV; (3.23)
if g"*'=0, or is “small,” take u = u"*; if not, compute
n+1y2
n=||g i il , (324)
lg"|
and define the new descent direction by
witl=gntlypy yn (3.25)

Don=n+1and go to (3.21).
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If the above assumptions on V, a(-, -), L(-) hold, one can
prove that, Vu® e ¥, one has

lim

n— +oc

|u" —ull =0,

(3.26)

where u is the solution of problem (P). In fact, it follows
from [26] that we also have

1\
" — ] < C 1 — ] (%) ,

where the condition number v, of a(-, -) is defined by

(3.27)

a(v, v)
[

a(v, v}

ve V- {0} o* “vev—1(o) v

vV, =

a

Remark 3.2. For finite dimensional problems (P),
algorithm (3.18)-(3.25) is nothing but a preconditioned
conjugate gradient algorithm for solving a linear system.

Remark 3.3. The choice of a proper scalar product over
V' is a critical factor for the convergence properties of the
conjugate gradient algorithm (3.18)-(3.25); indeed we
expect from (-, -) to be sufficiently close to a(-, -) so that the
above condition number v, will be of the order of 1; on the
other hand, to make algorithm (3.18)-(3.25) of practical
interest the linear problems associated to (-, -) (such as
(3.19) and (3.23)) have to be much cheaper to solve than the
ones associated to a(-,-). The art of preconditioning is
precisely to find the right compromise between these
seemingly contradictory properties of the scalar product
(-, -). It seems that in the particular case of the control
problem presently discussed (and also of the Stokes
problem (2.12)-(2.14) (see the Appendix)) the right scalar
product has been identified.

Remark 3.4. Back to the practical implementation of
algorithm (3.18)-(3.25), by g° (resp. g"*') “small” we
essentially mean that g° (resp. g”*!) satisfies

1%/l <e (resp. 1g" I/ g% <e),  (3.28)

where ¢ is a small positive number depending upon the
floating point arithmetic used by the computer; we have
been quite successful, taking é=10"" in (3.28) when
running on the CRAY X-MP.

3.5.2. Application of the Conjugate Gradient Algorithm
(3.18)-(3.25) to the Boundary Control of the Wave
Equation, via the Solution of Problem N\ e ={
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Applying the general conjugate gradient algorithm
(3.18)—(3.25) to the solution of A e =f, via (3.16), is possible

if T is sufficiently large; indeed, it suffices to take

V=E,

a(-,-)=</\-,->, L;é—><{u1,—-u0},é>.
On E, we shall use as scalar product

{v,w}— L (Vo°-Vnw® +v'w') dx,
Vv, weE. (3.29)

We obtain then the following conjugate gradient algorithm:

Step 0. Initialization.

ede H1(Q) and e) e L*(£2) are given; (3.30)
solve then
Uey=0 in Q, Q=0 on 2,
o0)=et, (0= o0
and
Oya=0 in Q,
%—% , oo z, (3.32)
pom=0,  Lor)=
Compute g,= {g5, g5} € E by
—V2g0= a‘l"’ (0)— in Q,
(3.33)
g3=0 onl,
g =" —Pol0), (3.34)
respectively. Set then
Wo = go. (3.35)

Now, for n >0, assuming thate,, g,, W,,, ¢, ¥/, are known,
Complne en+l’ gn+ 13 wn+ 15 Pry1s l//n+1 as fOHOWS:
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Step 1. Descent. Solve

O@,=0 in Q, ¢,=0 on 2,
_ 3.36)
_ 0P (
0)=w° 1 0)=w!
0,0)=w,, 5 0)=w,,
O, =0 in Q,
. 09,
Yo=—7— on 2, (3.37)
on |5
o,
jury=o, ¥
n
-V 6(;{ (0) in Q,
(3.38)
g°=0 onr,
and set
gr=—,0). (3.39)
Compute now
Ig(lVg |2+1g | )
= 34
en+1=en_pnwn’ (341)
(pn+1=(pn—pn¢n, (342)
wn-{»l:wn_pnlpn’ (343)
gn+1=gn_pngn' (344)

Step 2. Test of the convergence and construction of the new
descent direction. If g,, =0, or is small, take e=e, |,

O=0Q,.1, Y=V, ;if not, compute

_Jo(Veh, P +1gy. .17 dx
" (o (1VE22 + gl 1%) dx

, (3.45)

and set

wn+1=gn+l+ynwn (346)

Do n=n+1 and go to (3.40).

Remark 3.5. It appears at first glance that algorithm
(3.30)-(3.46) is quite memory demanding since it seems to
require the storage of (6¢,/0n)| 5 (in practice the storage of
0¢,,/0n over a discrete—but still large—subset of 2'). In fact,
we can avoid that storage problem by observing that since
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the wave equation in (3.36) is reversible we can integrate
simultaneously, from T to 0, the wave equation (3.37) and-

O¢@,=0 in Q,
¢,=0 on 2,
56 (3.47)
@,(T)and il (T) known from the integration

ct
of (3.36)from O to T.

In the particular case where an explicit scheme is used for
solving the wave equations (3.36), (3.37), and (3.47), the
extra cost associated to the solution of (3.47) is negligible
compared to the saving due to not storing (0¢,/0n)| 5. In
fact, the above conclusion still holds if one uses a convenient
implicit scheme.

3.6. Discretization of the Boundary
Control Problem

3.6.1. Generalities

A finite element/finite difference approximation of the
above boundary control problem is discussed in [3]. At the
present moment, we shall concentrate on the case, where
Q=(0,1)* and where finite difference methods are used
both for the space and time discretizations. Indeed, these
approximations can also be obtained via space discretiza-
tions associated to finite element grids like the one shown
on Fig. 2.1 (we should use, as shown in [3], piecewise
linear approximations and numerical integration by the
trapezoidal rule).

Let 7 and N be positive integers; we define 4 (space
discretization step) and At (time discretization step) by

h=1/I+1), At=T/N, (3.48)
respectively, and then denote by M, the point {ih, jh}.

3.6.2. Approximation of the Wave Equation (3.5)

Let us consider the wave equation (3.5), 1.e.,

He=0 inQ, =0 onZ;
@(x, 0) = %(x), (3.49)
@, (x,0)=el(x) on Q.

With ¢} an approximation of ¢(M, n At), we approximate
(3.49) by the following explicit finite difference scheme:

oy + oy =20}
|4z)?
L S ¢;+1+(PZ'71_4§9;
_ i’ =0,
h
1<i,j<,0<€ngN, (3.50),
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o75,=0 if Mgel, (3.50),
#y=eMy) (3.50),

or—@; =24te' (M), 1<ij<I

The above scheme satisfiesthe stabilitycondition
At<h/ /2. (3.51)

3.6.3. Approximation of (0p/on)| 5

Suppose that we want to approximate dp/én at M e I, as
shown in Fig. 3.1. Suppose that ¢ is known at E; we shall
then approximate dp/dn at M by

LOE)—o(W)
LB oY)

%

3 (M)

(3.52)

In fact, ¢(E) is not known since E ¢ Q. However—formally
at least—¢ =0 on X implies ¢,, =0 on X, which combined
with ¢,, — 4¢ =0 implies 4¢p =0 on ZX; discretizing this last
relation at M yields

P(W)+ o(E) + ¢(S) + ¢(N) — 4o(M)

i =0. (3.53)
Since N, M, S belong to T, (3.53) reduces to
(W)= —o(E), (3.54)
which combined to (3.52) implies that
0p o) 0—o(W) o(M)— (W)
i (M)~ — P P . (35%)

In that particular case, the symmetric approximation (3.52)
(which is second-order accurate) coincides with the one-
sided one in (3.55) (which is only first-order accurate, in
general). In the sequel, we shall use, therefore, (3.55) to
approximate d¢/0n at M and we shall denote by §,,¢ the
corresponding approximation of d¢/on at M, e I

N
Q W
E
M
S
FIGURE 3.1
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3.6.4. Approximation of the Wave Equation (3.6)

Similarly to (3.5), the wave equation (3.6) will be
approximated by

b -2y
|41)?
:—’+1,-+l//'-'_u+¢?}+1+!ﬁ§}_1—4'//§}
_ x =0,
1<i,j<Ln=N,N—1,..,0, (3.56),
Y =10u0" if Myel, (3.56),
N+l _ g N-1
{Y=0, U_—Uz <i, i<
Yy YT, 0, 1<ij<I (3.56),

3.6.5. Approximation of N\

Starting from
€, = {{eg" e}j}}lsi,jgh

and via the solution of the discrete wave equations (3.50)
and (3.56) we approximate A e by

4 Lyt
Yy i o
e =9y, — Y, .
/;,\ ’ {{ 24t j}}l<i,j<l

It is proved in [3, pp. 17-19] that we have (with obvious
notation)

(3.57)

1 —1
= ¥ Lw” 0 —yosl
1<ij<1I 2At v oy

Z 0@ 619",

0 Myerl*

(3.58)

where, in (3.58), ag=0y=1, a,=1, ¥n=1,., N—1, and
where I"* = I"minus the four corners {0,0}, {0, 1}, {1,0},
{1, 1}. It follows from (3.58) that Aj" is symmetric and
positive-semidefinite. Actually, it is proved in [3, Sec-
tion 6.2] that A" is positive definite if T > T, ~ At/h. This
property implies that if 7(>0) is given, it suffices to take
At/h sufficiently small to have the exact boundary
controllability for the discrete wave equation. This property
is in contradiction with the continuous case where the exact
controllability property is lost if T is too small (7 < 1 here).
The reasons for this discrepancy will be discussed in the
sequel.
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3.6.6. Approximation of \ e =f

With f, a convenient approximation of f= {u!, —u°}, we
approximate problem A e =f by

At
A e,=f,. (3.59)
h

In [3, Section 6.3], one may find a discrete variant of the
conjugate gradient algorithm (3.30)-(3.46) which can be
used to solve the approximate problem (3.59).

3.7. Numerical Solution of a Test Problem;
Ill-Posedness of the Discrete Problem (3.59)

Following [3, Section 7; 4, Section 3.7] we still consider
the case 2= (0, 1)%, with T'=15/4 /2 (strictly larger than
diam(Q) = \/5) and ¢, ¢! defined by

el=7t\/§e°.

It is shown in [3, Section 7] that using separation of
variable methods we can compute a Fourier Series expansion
of f=Ae. The functions u°(= —f!) and u'(=/f°) (both
computed by fast Fourier transform) have been visualized
on Figs. 3.2 and 3.3, respectively. From these figures, u°is a
Lipschitz continuous function which is not C'; similarly, u'
is bounded but discontinuous. On Fig. 3.4, we have shown the
graph of the function

e%(x,, x,) =sin ©tx, sin mx,, (3.60)

op
E(l) ,

t—>}

LUT)

27 F

-30

FIG. 32. u(x,,0.5).
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150

<0

&0

0

-80

-9Q

FIG. 33. u'(x;,0.5).

FIG. 34. [[(3p/on)(Dl t2r)-

where ¢, given by

o(x, ﬁcosnf(t——\/_>

X sin 7x, sin x5, (3.61)

is the solution of the wave equation (3.5) when ¢ and e' are
given by (3.60); we recall that (é¢/0n)|s is precisely the
Dirichlet control given by HUM (cf. Section 3.3) if the
initial conditions »° and «' satisfy {u', —u°} = A e.

The numerical methods described in Sections 3.5 and 3.6
have been applied to the solution of the above test problem
taking At = h/ﬁ. Interesting enough, the numerical results
deteriorate as 4 and At converge to zero; moreover, taking
At twice smaller, ie., At=~h/2 \/5, does not improve the
situation. Also, the number of conjugate gradient iterations
necessary to achieve convergence increases as h and Ar
decrease. Results of our numerical experiments have been
summarized in Table 1.

InTable I, €%, e!, and g, are the computed values of €°, ¢'
and g, respectively, where g = (0¢/0n)| 5, ¢ being the solu-
tion of the wave problem (3.5) associated to the solution e
of A\ e=f{(i.e., g is the optimal Dirichlet boundary control).

The most striking fact coming from Table! is the
deterioration of the numerical results as 4 and 4t tend to
zero; indeed, for 4 = iz the convergence was not achieved
after 1000 iterations. This deterioration is obvious from
Fig. 3.5 to 3.13, which show for A=, &, & comparisons
between the exact solutions and the computed ones: we
have plotted on these figures the values of °, €?, ¢', ¢! for
x,=0.5, and also the variation over [0, T'] of | g(¢)ll .2,
and |\ g(n 4t)| 12y (for n=0, ..., N). We observe that for
h =g the variations of ¢? and e! are so large that we have
been obliged to use a very large scale to be able to picture
them.

If for the same values of /& one takes a smaller 4¢ than
h/ﬁ the results remain practically the same. In Section 3.8,
we shall try to analyze the reasons of this deterioration of

TABLE 1
h 1/8 1/16 1/32 1/64 1/128

Number of conjugate gradient iterations 20 38 84 363. No convergence
le® — el 2y 042x10! 0.18x 10! 041x10~" 3.89 No convergence

le® —elll ey 0.65 0.54 2.54 498.1 No convergence

lle' —elll e 020 064 x107" 1.18 170.6 No convergence

lg—gcllzz, 0.51 0.24 024 1.31 No convergence

llgell 2z 7320 7.395 7456 7.520 No convergence

581/103/2-2
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FIG. 35. Variations of e%x,,0.5)(—) and e%(x;, 0.5)(- ") (h=1¢).

the numerical results as # — 0 and also to give cures for this
problem.

To conclude this section we observe that the computed
results are quite good for 4= and also that the error
| g — g.ll 12z, deteriorates much more slowly as #— 0 than
the errors ¢”—e?, e' —e!; in fact, the approximate values
lgcll 2z of  gll2x) are quite good, even for A= & if one
realizes that the exact value of | gl ;25 is 7.38668...; these
relatively good results concerning the behavior of g. are
clear from Figs. 3.7, 3.10, 3.13.

3.8. Analysis and Cure of the Ill-Posedness
of the Approximate Problem (3.59)

It follows from the numerical results discussed in Sec-
tion 3.7, that when 4 decreases to zero, the ill-posedness of
the discrete problem is getting worse. From the oscillatory
results shown in Figs. 3.5 to 3.13 it is quite clear that the
trouble lies with the high frequency components of the
discrete solution or, to be more precise, with the way the
discrete operator A7’ acts on the short wave length compo-
nent of e, . Before analyzing the mechanism producing those
unwanted oscillations let us introduce a vector basis of
R/ well suited to the following discussion. This basis %,
is defined by
(3.62)

By, = {qu}lsp.qsl’
where
(3.63)

w,, = {sin prih x sin qmjh}, o, ;<1

we recall that A= 1/(I+1).
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4.0

35

2.5+

o
u
T

FIG. 36. Variations of e'(x,,0.5)(—) and e!(x,,0.5)(--*) (k= ).

From the oscillatory results described in Section 3.7 it is
reasonable to assume that the discrete operator A;‘ damps
too strongly those components of e, with large wave
numbers p and g¢; in other words, we can expect that if p
and/or g are large, then A" {w,,, 0} or A;* {0, w,,} will be
quite small implying in turn (this is typical of ill-posed
problems) that small perturbations of the right-hand side
of the discrete problem (3.59) can produce very large
variations of the corresponding solution.

Operator A;"' is a fairly complicated one (see Section 3.6

FIG. 3.7. Variations of || g(t)ll z2(—) and |l g (D 2r( ) (h=15).
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FIG. 38. Variations of ¢%(x,, 0.5)(—) and %(x;, 0.5)(-+-) (h=%).

for its precise definition) and we can wonder which stage in
it is particularly acting as a low pass filter (i.e., selectively
damping the large wave number components of the discrete
solutions). Starting from the observation that the ill-posed-
ness persists, if for a fixed & we decrease 4¢, it is then natural
(and much simpler) to consider the semi-discrete case,
where only the space derivatives have been discretized.

In such a case, problem (3.5) is discretized as follows
(with ¢ = é¢/0t, ¢ = 0*¢/01*) if Q = (0, 1)? as in Section 3.6:

8.0 3
E.l: 0
4.8 15
{
S
.2 £
b
b
3.6F s
F
3.0p ]
r ¢
[
2.4 -5
1.8+ -0
r
S
b
1.2 F =15
0.6 -20
L T D e L IS BTSN S W _25’
9.0 0.1 0.2 .3 0.4 0.5 0.6 0.7 c.8 0.9 1.0

FIG. 39. Variations of e’(x,,0.5}—) and eX(x,, 0.5)(---) (A = 35).
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FIG. 3.10. Variations of || g(1)l| zxr(—) and | g 2r( -+ ) (h=3p).

h? 0
1<i,j<], (3.64),
@u=0 if {khIh}eT, (3.64),
@;(0) = e(ih, jh),
i(0)=¢, ) (3.64),

¢4(0)=e,(ih, jh), Vi j, 1<i,j<I

T Ty

N 1
I AAAE) 0.3 ) 0.9 0.7 0.8 V0.8 t]o

FIG. 3.11. Variations of ¢%(x, 0.5)(—) and e%(x,, 0.5)(--) (h= &).
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Consider now the particular situation, where

er=w,, e,=0. (3.65)
Since the vectors w,, are for 1 < p, g < I, the eigenvectors
of the discrete Laplace operator occurring in (3.64); and

that the corresponding eigenvalues 4,,(h) are given by

(2 ££)N

we can easily prove that the solution of (3.64), (3.65) is
given by

@ ;(t) = sin prih sin qrjh cos(\/ A, (h) 1),

0<i,j<I+1. (3.67)

Next, we use (3.55) (see Section 3.6.3) to compute, from
(3.67), the approximation of d¢/dn at the boundary point
My, ={0,jh}, with 1<;<I; thus, at time ¢, dp/dn is
approximated at M,; by

5q0h(M()j7 t)
1
== sin prh sin gnjh cos(y/4,,(h) t). (3.68)
If 1 < p <1, the coefficient K, (p) defined by

sin prh
h

Ky(p)= (3.69)

is an approximation of pr which is second-order accurate
(with respect to h); now if p ~ I/2 we have K,(p) ~ I, and if
p=1Iwehave (since h=1/(I+1)) K,(I)~m.

Back to the continuous problem, it is quite clear that
(3.64), (3.65) is in fact a semi-discrete approximation of the
wave problem

Oe=0 in Q, on’X

FaRy M o P

=0
¢ (3.70)

£ ..

3.0

FIG. 3.13. Variations of || ()|l z2r(—) and | g( 2ry( -7 ) (h= &)

1€ SOIUTION Of (3.7U) IS gIVEN by
o(x, t)=sin pnx, sin gnx, cos(n /p> +q* ). (3.71)

Computing (d¢/dn)| s we obtain

op
5’; (MOja t)
= — pr sin qrjh cos(n /p* + ¢* t).

We observe that if p <7 and g <1, then (d¢p/0n)(M,;, 1)
and J¢,(M,;, t) are close quantities. Now, if the wave
number is large, then the coefficient K(p)=np in (3.72) is
much larger than the corresponding coefficient K,(p) in
(3.68); we have actually

(3.72)

K(I)2)
K,(1/2)

K() _

FAl

4
=,
2

Figure 2.2 of Section 2.5 still applies for the present situa-
tion (replace m by p) and shows that for p, ¢ > (I + 1)/2, the
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approximate normal derivative operator introduces a very
strong damping. We should have obtained similar results by
considering, instead of (3.65), initial conditions such as

(3.73)

From the above analysis it appears that the approximation
of (0¢/dn)|z, which is used to construct operator A3,
introduces a very strong damping of the large wave number
components of e,.

Possible cures for the ill-posedness of the discrete
problem (3.59) have been discussed in [3, 4]. Reference
[3], in particular, contains a detailed discussion of a bihar-
monic Tychonoff regularization procedure, where problem
A\ e =1 is approximated by a discrete version of
in Q,

eMe, + /\ e, =f (3.74),

on T, (3.74),

with e,={e?, ¢!}, and where, in (3.74), operator M is
defined by M= (4 °)).

Various theoretical and numerical issues associated to
(3.74) are discussed in [3], including the choice of ¢ as a
function of 4; indeed elementary boundary layer considera-
tions show that ¢ has to be of the order of 42 The numerical
results presented in [3, 4] validate convincingly the above
regularization approach.

Also, in Ref. [3, p.42], we suggest that mixed finite
element approximations (see, e.g., [27] for an introduction
to mixed finite element methods) may improve the quality
of the numerical results; one of the reasons for this potential
improvement is that mixed finite element methods are
known to provide accurate approximations of derivatives
and also that derivative values at selected nodes (including
boundary ones) are natural degrees of freedom for these
approximations. As shown in Ref [28], this approach
reduces substantially the unwanted oscillations, since
without any regularization good numerical results have been
obtained using mixed finite element implementations of
HUM. The main drawback of this method is that (without
regularization) the number of conjugate gradient iterations
necessary to achieve convergence increases (slowly) with A
(in fact, roughly, as &~ '/2); it seems, also, on the basis of
numerical experiments, that the level of unwanted oscilla-
tions increases (slowly, again) with 7.

Several other possible cures are listed in Ref. [3], except
the obvious one, clearly suggested in the above reference by
[3, p- 41, Fig. 9.1] (which is essentially our Fig. 2.2). This
new (and simpler) cure consists of eliminating the short
wave length components of e, with wave numbers p and ¢
larger than (74 1)/2; to achieve this radical filtering it suf-
fices to define e, on a finite difference grid of step size > 2#.
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Justifying therefore the title of the present paper, this cure
was inspired to us by the striking similarity between the
damping mechanisms associated to the “naive” approxima-
tions of both the discrete Stokes problem and the present
boundary control problem, and then by the way one can
stabilize the Stokes problem, as shown in Section 2.5
(approach (a)). A finite element implementation of the
above filtering technique is discussed in the following
Section 3.9; also, for the calculations described in Section 4,
we have defined e, over a grid of step size 2h.

3.9. A Finite Element Implementation of
the Filtering Technique of Section 3.8

3.9.1. Generalities

A most natural fashion to combine HUM and the
filtering technique discussed in Section 3.8 is to use finite
elements for the space approximation; actually, as shown in
Ref. [3, Section 6.27], special triangulations (like the one
shown in Fig. 2.1) will give back finite difference approxima-
tions closely related to the one discussed in Section 3.6. For
simplicity, we suppose that 2 is a polygonal domain of R%;
we introduce then a triangulation Z, of £ such that
Q=U ., T, with & the length of the largest edge(s) of 7.
From 7, we define 7, , by joining (see, again, Fig. 2.3), the
midpoints of the edges of the triangles of 7,. With P, the
space of the polynomials in two variables of degree <1, we
define the spaces ¥, and V', by

Vi={vlveC%Q),vl,eP,,VTe T},

(3.75)
Von={vlveV,, vl r=0};
similarly, we define V,,, and V,,,, by replacing # by #/2
in (3.75). We observe that V,cV,,, Vg, <V, We
approximate then the L*()-scalar product over V), by

(1, Wy =1 wov(Q)w(Q), Yo,weV,, (3.76)
Q

where, in (3.76), Q describes the set of the vertices of 7, and
where w,, is the area of the polygonal domain, union of
those triangles of 7,, with Q as a common vertex. Similarly,
we define (-, -),/, by substituting 4/2 to 4 in (3.76).
3.9.2. Approximation of \e=1

We approximate the fundamental equation A e = f by the
following linear variational problem in V, x V,:

e, € Vo x Vo,

284e,, v) = (ul, 10D —J W0 dx, (3.77)
2

Vv= {0 v'} € Vo, x V.
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In (3.77), {-,-> denotes the duality pairing between
H~Y(Q) and Hy(2), and the bilinear form AJ(-,-) is
defined as follows

(i) Take z,=1{z},z,} € Vo, x Vo, and solve, for
n=0, .., N, the discrete wave equation

+1
¢, € VOh/Za
( n+1

o+ oh T =200, v)ys

+lAt|2LchZ-Vvdx=O, Voe Vo, (378)

with the initial conditions

0_ 0
Pn=2p,

Qr— @, =241z}, (3.79)
(ii) To approximate d@/dn over X, first introduce the
complementary subspace M, of V,, in V), , defined by

Mh/2= {U lve Vh/2, v| =0,

VTeZ,,suchthat 0T nI'=¢F}, (3.80)

and observe that M, , is isomorphic to the space yV,,, of the
traces over I of the functions of V) ,; the approximation of
(0@/On)| - at t = n At is then defined (cf. [3]) by solving the
linear variational problem

opre VVh/2§
(3.81)

f 5qoZvdF=J Vo, Vv dx, YoeM,,.
r Q

Variants of (3.81), leading to linear systems with diagonal
matrices are given in [3].

(iii) Now, forn=N, N—1, .., 0, solve the discrete wave
equation

e Vi nl=§pr! onr,
W YT =205, v (3.82)
+ |At|2f VU -Vodx=0, VoeVy,,,
Q
initialized via
W,IIV=0, ,],V+1— hN‘1=0. (3.83)
(iv) Finally, define 47°(-, -) by
AAIZ ,V)= /10,1.70) +(/11,UI) ,
w (Zq (A3 V)np2 B U )np2 (3.84)

Vv= {170, v') e Vor X Vons

R. GLOWINSKI

where in (3.84), 4, and 1, belong both to V,,, and satisfy

Y (P)—y, " (P)
241 ’

Ay(P)= =y (P),

A(P)=
(3.85)
VP interior vertex of 7, ,.

Following [3, Section 6] we can prove that

N
Wen )=t T | o005, dr,
n=0

Ve,, &, Vo, x Vg, (3.86)

where, in (3.86), ao=ay=1and a,=1if0<n<N.

It follows from (3.86) that A}(-,-) is symmetric and
positive semi-definite. As in [3, Section 6.2], we should
prove that Ay(-, -} is positive definite if T is sufficiently large
and if Q is a square (or a rectangle) and .7,, J,,, regular
triangulations of Q. From the properties of A{'(-,-) the
linear variational problem (3.77) (which approximates
A e=f) can be solved by a conjugate gradient algorithm
operating in V,, x V,. This algorithm is described in
Section 3.9.3.

3.9.3. Conjugate Gradient Solution of the Approximate
Problem (3.77)

The conjugate gradient algorithm for solving problem
(3.77) is a finite element implementation of algorithm
(3.30)(3.46) (see Section 3.5.2); it is also a simple variant of
algorithm (6.22)-(6.44) described in [3, Section 6.37].

DESCRIPTION OF THE CONJUGATE GRADIENT ALGORITHM.

Step 0. Initialization.

ede Vons eyeVy  aregiven; (3.87)

solve then, for n=0, 1, .., N, the discrete forward wave
equation

<<p8“+<98'1 — 205 U)
ik ’ W2

+j Vi -Vvdx=0,
2

Yoe Vo 95" ‘e Vo (3.88)
initialized by

and store ¢, o5 * .
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Then for n=N, N—1, .., 0, compute ¢, dp2, Y5~ ' by
backward (discrete) time integration, as follows:

(i) Ifn= N compute d¢y from ¢ using (3.81).
If n < N, compute first @ by solving
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<<bz+‘ +¢L ' =20 v)
|4t i

+[ Vop - Wwdx=0,
Q

forward wave equation

<</’8+</’3+2*2<P3+l ) Vo€ Vouas %' € Vouas (3.96)
, 0
|41)? 2 initialized by
o[ Vot Fods =0 R=vt  pl-pi'=2aiwl  (90)
Q
N ~N+1
V€ Vopyas € Vonas 390) andstore o, ¢, © . ;
VE Vowzs Po& Vou (3:90) Then for n=N, N—1, .., 0, compute @}, ¢, ¢; ' by
and then 6¢7, by using (3.81). backward time integration as follows:
. _ N N
(i) Take ¥ =57 on I"and use (i) Ifn=N, compute ¢, from ¢; u'smg (3.81).
If n < N, compute first ¢} by solving
n~1+l/1n+l__2l//n
0 0 Y A f an n
< |4t ’U>h/2 (‘Pk+(Pk+2—2(Pk+l >
| 41| "
+| VWi-Vodx=0, Voe Vypn, (391)
L 0 o +J V@it . Vo dx =0,
Q
n—1 : H
to compute the values taken b)( Vo € I./,,./2 ). at the interior Yoe Voua: 31 € Voo (3.98)
vertices of 7, ,. These calculations are initialized by
and then d¢} by using (3.81).
Yy (P)=0, Wy =gy NP =0, .. Tn sam
(i) Take y;=0¢} on I and use
VP interior vertex of 7,,,.  (3.92) )
( A A U 3
Compute then g,={gg, g5} € Vonx Vo, by solving the | 42| " w2
discrete Dirichlet problem .
+j VO Vodx=0, YoeVyn, (399)
ggE VOh’ g
1 ~1 -1 : :
o (VoY . to compute the values taken by ¥~ '( € V) at the interior
JQ Vg, Vudx = ( 241 v>h/2 — ), (393) vertices of 7, ,. These calculations are initialized by
Yve Vi, VT N1y p)
and then =y (P)=0, VP interior vertex of 7, ,. (3.100)
25€ Van, Compute now g,(={£?, &1 }) € Vou x ¥, by
(3.94) "
(g(l),v)h_—.J U’ dx — (Y3, 0)pas Voe Vo, 8« € Von
2 gl (3.101)
) j Vg%Vvdx:(M, v) , Yoe Vo,
If g, =0, or is small, take e, = ey; if not set 2 24t B2
Wo = Zo. (3.95) £i € Vons 5.102)
e — A3 W N 1 | R S U T S S — )
compuie €, . 1, Bri> Wep 1o Pryrs War g 28 I0HOWS! and then DOr by ‘
Step 1. Descent. For n=0, 1,.., N, solve the discrete o= Jo|Veel® dx +(gk &) (3.103)

T VEL-Iwldx+ (g1, wh),
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Once p, is known, compute
€ 1 =€r— PLW,, (3.104)
Pi+1 =Pk — PrPrs (3.105)
Yir1=Vi—pels, (3.106)
8ic+1=8k— Pi Bk (3.107)

Step 2. Test of the convergence and construction of the new
descent direction. If g, ., =0, or is small, take e,=e, . ,,

©n=0Qis1, ¥u=V¥,,;if not, compute

ZIQ IVg2+1|2dx+(gll(;19gll(+1)h
o IVeR 1> dx +(gi» g0

i ,  (3.108)
and set
Wit =81t VW (3.109)

Do k=k+1 and go to (3.96).

Remark 3.6. The above algorithm may seem a little bit
complicated at first glance (23 statements); in fact, it is fairly
easy to implement, since the only non-trivial part of it is the
solution (on the coarse grid) of the discrete Dirichlet
problems (3.93) and (3.101). An interesting feature of algo-
rithm (3.87)-(3.109) is that the backward integration of the
discrete wave equations (3.88) and (3.96) provides a very
substantial computer memory saving. To illustrate this
claim, let us consider the case where Q= (0,1)x (0, 1),
T=2/2, h=2%4, 4t =h/2/2=/2/256; we have then—
approximately—(512)? discretization points on X, therefore
in that specific case, using algorithm (3.87)-(3.109) avoids
the storage of 2.62 x 10° real numbers. The saving would be
even more substantial for larger 7 and would be an absolute
necessity for three-dimensional problems.

Remark 3.1. The above remark also shows the interest
of the HUM approach from a computational point of view.
In the original control problem, the unknown is the control
g which is defined over X; using HUM, the unknown is then
the solution e of A e=1. If one considers again the par-
ticular case of Remark 3.6,ie.,Q2=(0, 1) x (0, 1), T=2 \/5
h=2%, At="h/2 \/E, the unknown g will be approximated
by a finite dimensional vector with 2.62 x 10° components,
while e is approximated by e, of dimension 2 x (63)° =
7.938 x 103, a substantial memory saving indeed. Numerical
results obtained using algorithm (3.87)-(3.109) will be
discussed in Section 4.

4. EXPERIMENTAL VALIDATION OF
THE FILTERING PROCEDURE OF
SECTION 3.9 VIA THE SOLUTION OF
THE TEST PROBLEM OF SECTION 3.7

We consider in this section the solution of the test
problem of Section 3.7. The filtering technique discussed in

R. GLOWINSKI

Section 3.9 is applied with 7, a regular triangulation like the
one shown in Fig 2.1; we recall that J, is used to
approximate e,, while ¢ and y are approximated on ., , as
shown in Section 3.9. Instead of taking 4 to be equal to the
length of the largest edges of 7, it is convenient here to take
h as the length of the edges adjacent to the right angles of
7. The approximate problems (3.77) have been solved
by the conjugate gradient algorithm (3.87)-(3.109) of
Section 3.9.3. This algorithm has been initialized with
eg=e, =0 and we have used

JaIVePdx+ (gL, gl
fa Ve P dx+ (gl gd)

<10-1 (4.1)

as stopping criterium (for calculations on a CRAY X-MP).
Let us mention also that the functions u°, u!, g of the test
problem of Section 3.7, satisfy

N 20y = 12,92 - ..,
Il gll L2cx)="7.38668 ....

") g1y = 1177 .,

In the sequel, we shall denote by ||-lo.0, |l10> I-]_ 10
I-llo. the L*(Q), HX(RQ), H ™ '(2), LXZX) norms, respec-
tively (here |v], o= (I.Q |Vo|? dx)"* and |vf “Le=I"lia
where we H () is the solution of the Dirichlet problem
—dw=vinQ,w=00nT).

To approximate problem A e =f by the discrete problem
(3.77) we have been using h=1%, 3, %, %, & and
At=h/2\/§ (since the wave equations are solved on a
space/time grid of step size A/2 for the space discretization
and h/2 ﬁ for the time discretization); we recall that
T=15/4./2.

Results of our numerical experiments have been sum-
marized in Table 1L In this table, 2, e!, g, are defined as in
Section 3.7, and the new quantities 2, u! are the discrete
analogues of —i(0) and (dy//0¢)(0), where i is the solution
of (3.6), associated via (3.5), to the solution e of A e=1.

Comparing the above results to those in Table I, the
following facts appear quite clearly

(i) The filtering method described in Section 3.9 has
been a very effective cure to the ill-posedness of the
approximate problem (3.59).

(ii) The number of conjugate gradient iterations
necessary to achieve the convergence is (for /4 sufficiently
small) essentially independent of #; in fact, if one realizes
that for # = £ the number of unknowns is 2 x (63)> = 7938,
converging in 12 iterations is a fairly good performance.

The results of Table Il compare favorably with those
displayed in Tables 10.3 and 10.4 of [3, pp. 58, 597 which
were obtained using the Tychonoff regularization procedure
briefly recalled in Section 3.8; in fact fewer iterations are
needed here, implying a smaller CPU time (actually the
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TABLE Il

At=hj2 /2

A2 1/8 1/16 1/32 1/64 1/128
Number of conjugate gradient iterations 7 10 12 12 12
CPU time (s) CRAY X-MP 0.1 06 28 148 839
0__ 0
le ~¢cloa 96x1072 26x1072 22x1072 64x1072 151072
e no,n
0_ 0
‘f—oe—cl'ﬁ 35%10~! 18x10~" 9x10-2 44x10°2 22%1072
le lx,n
11
le —ecllog 1x10"! 26x107? 15x1072 7x1073 32x1072
lleflo,0
0_ .0
""_OM 24x10-8 3x107° 6x10-8 8310~ 66x 1078
0.0
“ul—ul"—l Q -7 -7 —6 _5 _5
—_— 69 x10 46x10 94x10 2x10 85x10
flu'll ~1.q
lg—&cllo.x 12x10~! 43x1072 2x 1072 76x1073 34x10°3
||g||o,£
lgellos 727 7.386 7453 7405 7.381

Note. We take h/2 as the discretization parameter to make easier comparisons with the results of Table 31 and of [2, Section 101]).

CPU time seems to be a sublinear function of 4 > which is
within to a multiplicative constant of the number of points
of the space/time discretization grid). Table II also shows
that the approximation errors (roughly) satisfy

Heo - e?» [ 20y = O(hz)’

(4.2),

fle® — e?- | @ = O(h),
||€’1 —ei | ey =0(h), (4.2),
lg—g.l L) = O(h). (4.2);

Estimates (4.2), and (4.2), are of optimal order with respect
to A in the sense that they have the order that we can expect
when one approximates the solution of a boundary value
problem, for a second-order eiliptic operator, by piecewise
linear finite element approximations; this result is not
surprising since (from Section 3.4.2, relation (3.12)) the
operator A associated to £ = (0, 1) x (0, 1) behaves, for T

sufficiently large, like
-4 0
2T .
< 0 7 )

(we have here x,= (0.5, 0.5) and C=0.5).
In order to visualize the influence of 4 we have plotted for
=1, 5 & 5, &, and At=h/2 \/5 the exact solutions e,
e', g and the corresponding computed solutions e, ¢!, g..
To be more precise, we have shown the graphs of the func-
tions x, »e° (x,,05), x, »>e' (x,,05), 1> g2z

(4.3)

(solid lines) and of the corresponding computed functions
(dotted lines). These results have been reported on Figs. 4.1
to 4.5, and the captions there are self-explanatory.

The above numerical experiments have been done with
T=15/4 ﬁ; in order to study the influence of T we have
kept «° and u' as in the above numerical experiments and

taken 7= 28.2843. For h= £ and At = h/2 \/5 we need just
10 iterations of algorithm (3.87)-(3.110) to achieve
convergence, the corresponding CRAY X-MP CPU time
being then 800 s (!) (the number of grid points for the space/
time discretization is now ~ 86 x 10°). We have ||g. || 25, =
232, [u® —ul |l 20y =58x 10" and |u' —ul| _, o=16x
1077, The most interesting results are the ones reported on
Figs. 4.6a and b. There, we have compared Te? and Te! (for
T=28.2843) to the corresponding theoretical limits ¥° and
%" which, according to Section 3.4.2, relations (3.13)—(3.15),
are given by

—A4°=u'/2 inQ, y°=0

onl, (44)

xt=—u’2. (4.5)
The solid curves represent the variations of x;, - ¥°(x;, 0.5)
and of x; — x'(x,, 0.5), while the dotted curves represent the
variations of x, -» Te(x,,0.5) and x, - Te!(x,, 0.5). In
our opinion the above figures provide an excellent numerical
verification of the convergence result (3.13) of Section 3.4.2
(we observe at x; =0 and x,=1 a (numerical) Gibbs
phenomenon associated to the L? convergence of Te! to x').
Conversely, these results provide a validation of the
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FIG. 4.1 (h=%, At="h/2 ﬁ) (a) Variation of ¢%(x,,0.5)(—) and eg(x,,O.S)(-"); (b) Variation of e'(x;,0.5)(—) and ei(xl,O.S)(“');
(c) Variation of || gll 2(—) and [lg. ) 2ry( - )-
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FIG. 42. (h=14, At=h/2./2): (a) Variation of €%(x,,0.5(—) and e%(x,,0.5)(:-); (b) Variation of e'(x;,0.5(—) and e;(x,,05)(--);
(c) Variation of | gl .2 (—) and hgellzary ().
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FIG.. 4._3. (h=1%,4t=h2 ﬁ)z (a) Variation of €%x,,05(—) and €%x,,0.5)(---) (b) Variation of e'(x,,0.5(—) and e.(x;,0.5)( ")
(c) Variation of llgllL2y(—) and [ g.| )
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FIG. 44. (h=14, At=h/2./2): (a) Variation of €%x,,05)(—) and €%(x,,0.5)(---); (b) Variation of e'(x;,05)—) and e'(x,,05)(-*);
(c) Variation of || g| () and [lg.|I Lz(r)( )
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FIG. 45. (h=%, At=h/2 \/5): (a) Variation of €%x,,0.5(—) and e%x,,0.5)(++-); (b) Variation of &'(x;,0.5(—) and el(x,,0.5)(:*");
(c) Variation of || gl z2ry(—) and [lg. | 2ry( ).
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numerical methodology discussed here; they show that
this methodology is particularly robust, accurate, non-
dissipative and perfectly able to handle very long time
intervals [0, T]. Actually, it will be shown in [29] that the
above-mentioned qualities of our numerical methods persist
for initial data u® and u' much rougher than those
considered in Sections 3.7 of the present article.

FIG. 46. (h=5, At=h2./2, T=282843) (a) Variation of
2%, 0.5(—) and Te(x,,0.5)( -+ ); (b) Variation of x'(x,, 0.5)(—) and
Tel(x1,05)( ).
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5. SOME COMMENTS ON THE WAVELET
APPROXIMATION OF THE NAVIER-STOKES
EQUATIONS

5.1. Synopsis

The main goal of this section is to briefly discuss some
issues associated to the wavelet approximation of the incom-
pressible Navier—Stokes equations

a—u—vV2u+(u-V)u+Vp=f

in Q,
Ot

(5.1)

V-u=90 in 2, (5.2)
completed with appropriate initial and boundary conditions;

notation is like in Section 2, with the nonlinear term in (5.1)

defined by
d d
(u-V)u={z uj%} .

j=1 axj i=1

Wavelets have become a generic name denoting various
mathematical objects: the wavelets that we have in mind are
the compactly supported ones introduced by I. Daubechies
in [30], motivated by signal processing applications.
Indeed, it has been shown in [31, 32] that the Daubechies
wavelets have interesting possibilities concerning the
numerical solution of partial differential equations,
including the viscous Burgers equation

U, ‘+uu,.=vu,,,

where the viscosity v is small; the main difficulty with
Daubechies wavelets is the treatment of boundary condi-
tions, particularly for domains with a complicated shape.

5.2. Generalities on Compactly Supported Wavelets

As mentioned just above, the wavelets that we consider
are the compactly supported omes introduced by 1.
Daubechies in [30]. These wavelet functions are defined
from a so-called scaling function ¢ solution of the scaling
relation:

2N—1

e(x)= ) ap2x—k)

k=0

VxeR. (5.3)

If we require the scaling function ¢ to satisfy, for example,

[ ox)ydx=1, (5.4)
R
then relation (5.3) clearly implies that
2N -1
T a=2. (55)
k=0
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If we require now the translates of ¢ by the integers to be
orthogonal, i.¢., to satisfy

f(p(x—l)(p(x—m)dx=0, VimeZ, l#m, (5.6)
R

the scaling relation (5.3) implies that

2N—1

Z Aray_ 2, =0,

k=0

VmeZ, m#0 (5.7)

(in (5.7), we take a;,_,, =0if k—2m¢ {0,1,..,2N—1}).
If relations (5.5) and (5.7) are satisfied the functions o
defined by

Pu(x)=2"(2/x~1) (5.8)

(i.e., obtained from ¢ by translation and dilation) form a
basis of L*(R).

The fact that the set {a, };Y ;" is finite implies that ¢ has
a compact support. Without additional relations on the coef-
ficients a,, the scaling function ¢ will not be smooth, in
general. Take, for example, N=1 and a,=a, =1, then the
function ¢ defined by

if 0<x<1, ¢(x) =0 elsewhere

p(x)=1

clearly satisfies (5.3)-(5.7); however, it is definitely a
discontinuous function.

To force the smoothness of ¢, we may require, for
example, that the monomials 1, x, ..., x¥ ~! have to be linear
combinations of the translates ¢(x —/); this will imply

2N—1

Y (—1)*k"a,=0, for m=0,1,.,N—1.  (59)
k=0
Suppose that we have constructed a set {a, } ;¥ ;! satisfying

(5.5), (5.7), (5.9); to construct the scaling function ¢ from
this set we may proceed as follows:

Taking the Fourier transform of both sides of (5.3} we
obtain

os)=] ox)e = dx

s 1 2N -1 )
¢ <_><_ a emsk>'
22 ,EO x

Define the function P by

(5.10)

2N—1 )
P(s)=1 z a,e 2™k,
k=0
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it follows then from (5.10) that we have

oo (r()

Reiterating (5.11 )—and observing that (5.4) implies that
$(0) = 1—we obtain the following infinite product relation

(5.11)

é(s)= [ PQ2s).

(5.12)
j=1
The scaling function ¢ is given then by
<p(x)=f @(s) e*™* ds. (5.13)
R

The fast Fourier transform can be used to obtain ¢ from
¢ in (5.13); actually, since it can be shown that the support
of ¢ is the interval [0, 2N — 1], it suffices to know ¢ at
x=0,1,..,2N—1, to obtain—via the scaling relation
(5.3)—its values at any dyadic number of the interval
[0, 2N — 1] (ie., at any x of the above interval which has a
finite binary expansion; we recall that the set of the dyadic
real numbers is dense in R).

The construction of the scaling function given here is the
one discussed in [317; see, e.g., [33] for other methods to
construct ¢.

The basic wavelet function  is defined from the
coefficients a, and from ¢ by

1
e(x)= Y (=D'a;_o2x—k); (514)
k=2—-2N
next, we define i, by
Y u(x) =2"2(2/x —1). (5.15)

In order to use wavelet based Galerkin solution methods,
we introduce for # fixed the following subspaces V,, and W,
of L3(R):

V, = closure of the linear space spanned by

{Oni}iczs (5.16)
W, = closure of the linear space spanned by
{Vurticz- (5.17)
Then the foliowing properties hold:
Veac Vi, Va, (5.18)
closure (U V,,> =L%(R), (5.19)



ENSURING WELL-POSEDNESS BY ANALOGY

{@n},cz1s an orthogonal basis for V,,, Vn, (5.20)
W, is the orthogonal complement of ¥, inV,,,, (521)
{W.w},cz1s an orthogonal basis for W,, Vn, (5.22)
¢, and ¥, have a compact support, Vn, /[, (5.23)
[ Gutx)dx=27""2,

" (5.24)
| Walx)dx=0, wnL

R

A further consequence of (5.18)-(5.21) is
Lz(R) = Vn@ Z @ IJ/]" vn’ (525)

j=n

which clearly implies L (R)=V,®3Y,,,® W,.

Incidently, relation (5.25) is of fundamental importance
to implement wavelet based multilevel solution methods.

The approximation properties of the Daubechies func-
tions are discussed in, e.g., [30, 31]; observing that for N
sufficiently large (see [30, 31] for a more precise statement)
we shall have ¢ and ¢ belonging to H™(R) (with m < N), it
has been shown that if the function 1 is sufficiently smooth
then

”f— Pn(f)” HY(R) = 0(27"(N_m)),

where P,: L (R)— V, is the orthogonal projector from
L*(R)to V,.

We have shown on Fig. 5.1 the graphs of the scaling func-
tion ¢ and wavelet function ¥, respectively, corresponding
to N=3.

FIG. 5.1. Variation of p(—) and y(---)if N=3.
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5.3. Application to the Solution of the
Incompressible Navier-Stokes Equations

5.3.1. Generalities

The Navier-Stokes equations that we consider are those
given by (5.1), (5.2), completed by initial and boundary
conditions. Concerning the wavelet solution of the above
Navier-Stokes equations, we see immediately three sources
of potential difficulties, namely:

(i) The treatment of the incompressibility condition
V.u=0.

(ii) The treatment of the boundary conditions.

(iii} The simulation of flow at large Reynolds numbers.

In this article we shall focus on (i); however, the two other
issues deserve some comments:

Concerning boundary conditions, the periodic case is quite
easy to implement; on the other hand, other boundary
conditions such as Dirichlet and Neumann yield serious
difficulties, the main reasons being that in a wavelet
expansion the coefficients are not pointwise values of the
function or of its derivatives, as is the case with finite
elements or finite differences. Among the possible cures let
us mention boundary fitted wavelets like the ones developed
by S. Jaffard and Y. Meyer in [34], or fictitious domain
methods, in the spirit of [35,36]; we are currently
investigating the second approach. Another possibility is to
couple wavelet approximations (used away from the
boundary) with finite elements (used in the neighborhood of
the boundary), but the matching problems (at least for
nonoverlapping couplings) are essentially as difficult to
implement as are boundary conditions.

Concerning now the simulation of flow at large Reynold
numbers we can predict, on the basis of preliminary numeri-
cal experiments done with the Daubechies wavelets, that for
an equivalent amount of computational work, wavelet
based methods are more stable and accurate than finite
element, finite difference, and spectral methods, at least for
problems with very simple geometry and boundary condi-
tions. The above experiments involved the solution of the
Burgers equation u,+uu,=vu,, (cf. [31,32]) and of the
Navier—Stokes equations with periodic boundary conditions
(cf. [37]1). A key property of wavelet based solution
methods is that they seem to require much less (if any at all)
artificial viscosity for highly advective flow; a possible
explanation of this behavior is that it is a consequence of the
orthogonality of the basis functions and of their localization
properties in the spatial and spectral domains.

The treatment of the incompressibility seems to be even-
tually fairly simple and will be addressed in the next section.
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5.3.2. Wavelet Treatment of the Incompressibility Condition

Operator splitting techniques applied to the solution of
the Navier-Stokes equations (5.1), (5.2) lead to the
following Stokes equations

au—wWa+Vp=f
Vou=0

in £,
in Q.

(5.26)
(5.27)

We suppose that the boundary conditions are defined by

u=g onrl (withjg-ndrzo); (5.28)
r

i.e, they are of the Dirichlet type.

R. GLOWINSKI

7I(RY)=Q® P, (R,),

i=1

ViR = (¥ (R,

(5.33)
(5.34)

respectively.

By restricting to Q the elements of the two above spaces,
we obtain ¥ Y(Q) and VY(Q); if Q is bounded, these two
spaces are finite dimensional. On the basis of the analysis
done in Section 2.4, concerning the finite difference and
finite element approximations of the Stokes/Dirichlet
problem (5.26)-(5.28) we shall approximate the velocity
spaces V, and V, by appropriate subspaces of V()
(taking into account, in some way or another, the
boundary conditions v=0 and v=g, respectively), and
then the pressure space by ¥V (2); in order to have

* r A/ 1

A Iirmatmugl farmudatinn ~nf arohlaowmm (£9€) (&7 =

uel,; Vve V, we have
J (2xu-v+vwWu-Vv)dx (5.29)
Q
—f pV-vdx:f f-vdx,
Q Q
qu-udxzo, Vge L3(Q); pe LA(Q). (5.30)
Q

In (5.29), (5.30), we have v-w=3X7_ v,w,, Vv={v,}<_,,
W= {Wi};i= 1 Vv-Vw= Z?:x ;1=1 (avi/axj)(awi/axj); Vo=
(Hy(R))?and V,={v|ve (H'(Q))*, v=gonT}.

It follows from (5.29), (5.30) that the two fundamental
spaces in the variational formulation of (5.26), (5.27) are
L*(Q) (for the pressure) and (H'(£2))? (for the velocity).
We discuss now the wavelet approximation of the
variational problem (5.29), (5.30):

From now on we shall denote by ¢ the scaling function
associated to the positive integer N (the precise definition of
the scaling function has been given in Section 5.2); the
parameter N plays clearly the role of a polynomial degree.
We define next ¢ ) and @}'(R) by

@) (x)=2""(2/x 1), VxeR,

@Y (R) = closure of the linear space spanned by

{‘P'Z}leza

(5.31)

(5.32)

respectively.

In order to apply wavelets to the solution of multi-
dimensional problems an obvious approach is to use tensor
products of one variable function spaces to define the multi-
dimensional ones. We define therefore the spaces ¥ Y(R%)
and V¥(R?) by

B e e R T P R 3 wmane e

their wavelet analogues in (5.29), (5.30) to obtain a wavelet/
Galerkin  approximation of the Stokes problem
(5.26)-(5.28).

The wavelet implementation of Dirichlet boundary con-
ditions, for multidimensional problems (by fictitious domain
methods, in particular), is presently under investigation.

APPENDIX: CONJUGATE GRADIENT
SOLUTION OF THE STOKES PROBLEM

As announced in Section 2.5 we shall discuss in this
appendix the preconditioned gradient solution of the
generalized Stokes problem:

au—wW2u+Vp=f inQ, (A.1)
Vou=0 in Q, (A.2)
u=g, only,
sy (A3)
Vo——np=g, on/l,
on

where Q = R? (d>2) and where I, I, are two subsets of
the boundary I” of 2, such that

I'ynl' =@, closure(lqurl')="T; (A4)
ifI''= (ie, I'=T,) we have to assume that
f go-ndl=0. (A.5)
r

Following Section 2.3, we should easily prove that the
pressure solution in (A.1)—(A.3) is the solution of

Ap=—V u,, (A-6)
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where u, is the solution of the elliptic system

aug—v dug=f in Q, (A7)
Uy =go on Iy,
dug (A.8)
V—=8, on F17
on

and where operator A is defined by

Aq=V -u,, Yge L}(Q), (A.9)
with u, the solution of the following elliptic system:
au,—vdu,= —Vqg in Q, (A.10)
u,=0 on [y,
ou, (A.11)
v—<i=¢n onl.
on

Using integration by parts we can easily prove that

J (Aq) ¢’ dx=f (au,-u, +vVa, -Vu,)dx,
Q Q

Yq, g’ € L} (). (A.12)
It follows from (A.12) that operator A is symmetric

and—at least—positive semi-definite; indeed we have more

since we also have

Vge P,

L,, (Aq)q dx =y liq]l 720 (A.13)

where, in (A.13), y is a positive constant and space P is
defined by

P=1%Q), if I'#Q (A.14)
and
p={algeri@, | qar=ol.
Q
if Io=T. (A.15)

From these properties, operator 4 is an isomorphism
from P onto P, implying in turn that Eq. (A.6) has a unique
solution in P, if the right-hand side —V -u, belongs to P. If
I, # &, it is clearly the case; if I'y =TI, we have

'[ V-uodx=f uO-ndl":LgO-ndF:O,
Q r

which implies that —V -u, belongs to P and therefore that
(A.6) has a unique solution.
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Observe now that Eq. (A.6) is equivalent to the linear
variational problem

peP
(A.16)

j (Ap)qu=—f V uqq dx, Vge P;
Q Q

from the properties of operator A mentioned above, it
appears that problem (A.16) is a particular case of those
problems (P), whose solution has been discussed in
Section 3.5.1. Problem (A.16) can be solved therefore by the
conjugate gradient algorithm (3.18)—(3.25).

The corresponding algorithm will be fully defined once
one has specified the scalar product to be used over space P.
As discussed in [20, 387, the usual scalar product of L*(),
namely,

{e.4'} *JQ 99’ dx,

leads to an algorithm with poor convergence properties if
v/a < 1. In order to have an algorithm performing well for
all values of v/a the following scalar product is advocated
(and justified) in [20, 381,

{9.9'} —*fg (S7'9) q' dx,

where operator S: P — P is defined as

Sg=vqg+ap,, Vgqe P, (A.17)
with ¢, the solution of
. 0
—do,=q ingQ, %:0 on Iy,
" (A.18),
¢,=0 onl, if I'#@,
) dp
—Ap,=q inQ, Fn—q= on Iy,
(A.18),
jq)qu:o, if ry=r.
0

From a practical point of view it is more imporiant to
know S~' than S to implement a conjugate gradient
algorithm preconditioned by S.

The space P being equipped with the scalar product
associated to S ', and, assuming that I, # ¢, algorithm
(3.18)-(3.25) applied to the solution of problem (A.16)
leads to the following algorithm (cf. also [38, Section
43.37).
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DESCRIPTION OF THE ALGORITHM.

p’ e Pis given; (A.19)
solve
au® —v Au=f-Vp® inQ,
wW=g, only, (A.20)
0
v—[3;=g1+np° onrl,,
and set
=V -u° (A.21)
Solve now
’—A(p = I‘O m Qa
0
% _0  onrl, (A.22)
on
¢°=0 onl,
and set
g =vr’+ a9’ (A.23)
wl = g° (A.24)

Then for m =0, assuming that p™, u”, r”, g”, w” are known,
compute p” !, wm L gt wmH as follows:
Solve

an” —v 42" = —Vw" in Q,
=0 on Iy, (A.25)
v %u_ =nw" onl,
]
and set
F=V.a" (A.26)
Compute
farmg” dx
=2 A27
P [o P dx (A.27)
and then
prrtt=p" = paw", (A.28)
u"tl=u"—p,, 0" (A.29)
Prtl=y"—p, " (A.30)
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Solve, next,
—46™=F"  inL,
a b 14}
2 _0 onl,, (A.31)
on
¢"=0 onl’,
and compute
gt = g" = (V" + ™). (A.32)

If{ormt g™ dx/for’g® dx<e take p=p” "', u=u""";
if not compute

,))m:j rm+1gm+1 dX/J rmgm dx, (A33)
el I
and then

wrtl= gmtlyy wm (A.34)

Do m=m+ 1 and go back to (A.25).

Algorithm (A.19)-(A.34) has proved to be quite efficient
for solving Navier-Stokes equations on a quite large range
of Reynolds numbet. To conclude this Appendix we have
the following remarks:

Remark A.l. In the case where I'o=1I, we should
replace (A.20), (A.22), (A.25), (A.31) by

au®—v Au°=f—-Vp® ingQ,
(A.20)
=g, onl,
—A4p°=r"  inQ,
A22)
a(po 0 (
e onlrl, qu) dx =0,
o™ —vda"=—-Vw™ in Q,
(A.25)
a”"=0 onl,
_AGT=F" g,
_ A3ty
- (
—(p—=0 onl, J @™ dx =0,
on o)

respectively.

Remark A2. Taking ¢e=10"'* in the above stopping
criterion has provided very satisfactory results when
running on the CRAY X-MP.

Remark A.3. In practice one solves a finite dimensional
analogue of problem (A.16), obtained by a finite difference,
or finite element, or spectral approximation of the
Navier—Stokes equations (see, e.g., [ 38, Sections 4 and 5]
for this aspect of the solution process).
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